A lactosaminoglycan-associated antigen is associated with a carbohydrate moiety of all three zona pellucida (ZP) glycoproteins of pig and rabbit but is absent in the mouse and rat. A monoclonal antibody (PS1) recognizing this determinant was obtained by immunizing mice with a porcine ZP glycoprotein isoform purified by two-dimensional polyacrylamide gel electrophoresis. Conditions known to remove O-linked or sialic acid carbohydrate moieties (alkaline reduction; O-glycanase or neuraminidase enzymatic cleavage) did not remove the carbohydrate epitope. However, treatment with endo-beta-glycosidase, endoglycosidase F, or combinations of neuraminidase plus beta-galactosidase, totally removed the determinant, indicating that it is associated with a poly-N-acetyllactosaminoglycan structure present on an N-linked oligosaccharide. Molecular morphology studies using immunofluorescence and confocal microscopy techniques demonstrate that the PS1 antigen is localized at the surface of the ZP. Confirmation of this localization was obtained through studies that show that this antibody will inhibit homologous sperm binding to the pig ZP. Additional analyses using modular contrast microscopy and immunocytochemistry demonstrate that this carbohydrate-associated antigen is localized in discrete layers throughout the ZP matrix. These studies are the first to demonstrate the presence of a lactosaminoglycan type carbohydrate moiety in all three ZP proteins using a monoclonal antibody that appears to be involved in sperm recognition and structural organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod65.3.951 | DOI Listing |
Vet Res
January 2025
UVSQ, INRAE, BREED, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.
View Article and Find Full Text PDFExp Anim
January 2025
Research Institute for Microbial Diseases, Osaka University.
In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.
View Article and Find Full Text PDFProtein Pept Lett
January 2025
Scientific Research Center, Beijing ChosenMed Clinical Laboratory Co., Ltd. Beijing100176, China.
Background: The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).
Objective: This study aimed to explore the role of ZP3 in PAAD.
Methods: A comparative analysis of ZP3 gene expression was performed to discern differences between various types of cancer and PAAD, leveraging data sourced from The Cancer Genome Atlas (TCGA).
F S Rep
December 2024
Reproductive Center, Medical Corporation Group Mio Fertility Clinic, Kuzumo-Minami, Yonago, Japan.
Objective: To investigate whether artificial removal of zona pellucida (ZP) at the pronuclear stage improves good-quality embryos and blastocyst development in patients with difficulty conceiving because of severe fragmentation in early-cleavage stage.
Design: Exploratory investigation.
Setting: Reproductive center.
Biomedicines
December 2024
Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.
Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!