Mitochondrial membrane potential (DeltaPsi(m)) is severely compromised in the myocardium after ischemia-reperfusion and triggers apoptotic events leading to cell demise. This study tests the hypothesis that mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel activation prevents the collapse of DeltaPsi(m) in myocytes during anoxia-reoxygenation (A-R) and is responsible for cell protection via inhibition of apoptosis. After 3-h anoxia and 2-h reoxygenation, the cultured myocytes underwent extensive damage, as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis, and decreased ATP concentration. Mitochondria in A-R myocytes were swollen and fuzzy as shown after staining with Mito Tracker Orange CMTMRos and in an electron microscope and exhibited a collapsed DeltaPsi(m), as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Cytochrome c was released from mitochondria into the cytosol as demonstrated by cytochrome c immunostaining. Activation of mitoK(ATP) channel with diazoxide (100 micromol/l) resulted in a significant protection against mitochondrial damage, ATP depletion, cytochrome c loss, and stabilized DeltaPsi(m). This protection was blocked by 5-hydroxydecanoate (500 micromol/l), a mitoK(ATP) channel-selective inhibitor, but not by HMR-1098 (30 micromol/l), a putative sarcolemmal K(ATP) channel-selective inhibitor. Dissipation of DeltaPsi(m) also leads to opening of mitochondrial permeability transition pore, which was prevented by cyclosporin A. The data support the hypothesis that A-R disrupts DeltaPsi(m) and induces apoptosis, which are prevented by the activation of the mitoK(ATP) channel. This further emphasizes the therapeutic significance of mitoK(ATP) channel agonists in the prevention of ischemia-reperfusion cell injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.2001.281.3.H1295 | DOI Listing |
Comp Biochem Physiol A Mol Integr Physiol
February 2025
Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada. Electronic address:
Central neurons of the common goldfish (Carassius auratus) are exceptional in their capacity to survive Ca-induced excitotoxicity and cell death during hypoxia. Horizontal cells (HCs) are inhibitory interneurons of the retina that are tonically depolarized by the neurotransmitter, glutamate, yet preserve intracellular Ca homeostasis. In HCs isolated from goldfish, and in the absence of glutamatergic input, intracellular Ca concentration ([Ca]) is protected from prolonged exposure to hypoxia by mitochondrial ATP-dependent K (mK) channel activity.
View Article and Find Full Text PDFJ Mol Cell Cardiol Plus
September 2024
Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
The small splice variant of the sulfonylurea receptor protein isoform 2 A (SUR2A-55) targets mitochondria and enhances mitoK activity. In male mice the overexpression of this protein promotes cardioprotection, reducing myocardial injury after an ischemic insult. However, it is unclear what impact SUR2A-55 overexpression has on the female myocardium.
View Article and Find Full Text PDFBiomedicines
October 2024
Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China.
Cardiovasc Res
August 2024
Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany.
Int J Mol Sci
July 2024
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoK) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!