Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Pacific Northwest Consortium-Collaborative Access Team (PNC-CAT) has begun operating an insertion device beamline at the Advanced Photon Source. The beamline has been extensively used for XAFS studies. This paper summarizes its capabilities, and our initial operational experience. The beamline is based on APS undulator A, and incorporates full undulator scanning. The monochromator is liquid nitrogen cooled and has both Si(111) and Si(311) crystals in a side-by-side configuration. Crystal changes only take a few minutes. The crystals cover the energy range from 3-50 keV with fluxes as high as 2x10(13) ph/sec. Microbeams can be produced using Kirkpatrick-Baez mirrors (spot size 1-3 microm) or tapered capillaries (sub-microm spots). When these optics are combined with a 13-element Ge detector, the beamline provides powerful microbeam imaging and spectroscopy capabilities. Experimental examples from the environmental field and in-situ UHV film growth will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0909049500015946 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!