This article reviews the development and current status of automated multiple pesticide residue analysis. Various configurations of equipment that perform specific steps in a method of analysis are described. These include the use of Technicon modules, automatic injectors for gas chromatography, specially designed units and data processing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/13.7.302DOI Listing

Publication Analysis

Top Keywords

automated multiple
8
multiple pesticide
8
pesticide residue
8
residue analysis
8
systems automated
4
analysis article
4
article reviews
4
reviews development
4
development current
4
current status
4

Similar Publications

Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study.

J Neuroeng Rehabil

January 2025

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Vita Stråket 12, Floor 4, 41346, Gothenburg, Sweden.

Background: Myoelectric pattern recognition (MPR) combines multiple surface electromyography channels with a machine learning algorithm to decode motor intention with an aim to enhance upper limb function after stroke. This study aims to determine the feasibility and preliminary effectiveness of a novel intervention combining MPR, virtual reality (VR), and serious gaming to improve upper limb function in people with chronic stroke.

Methods: In this single case experimental A-B-A design study, six individuals with chronic stroke and moderate to severe upper limb impairment completed 18, 2 h sessions, 3 times a week.

View Article and Find Full Text PDF

Rapid luminescence-based screening method for SARS- CoV-2 inhibitors discovery.

SLAS Discov

January 2025

Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way. Nutley, New Jersey 07110, United States. Electronic address:

The COVID-19 pandemic has emphasized the necessity for rapid and adaptable drug screening platforms against live pathogenic viruses that require high levels of biosafety containment. Conventional antiviral testing is time-consuming and labor-intensive. Here, we outline the design and validation of a semi-automated drug-screening platform for SARS-CoV-2 that utilizes multiple liquid handlers, a stable A549 cell line expressing ACE2 and TMPRSS2 receptors, and a recombinant SARS-CoV-2 strain harboring the nano-luciferase gene.

View Article and Find Full Text PDF

The field of medical image segmentation powered by deep learning has recently received substantial attention, with a significant focus on developing novel architectures and designing effective loss functions. Traditional loss functions, such as Dice loss and Cross-Entropy loss, predominantly rely on global metrics to compare predictions with labels. However, these global measures often struggle to address challenges such as occlusion and nonuni-form intensity.

View Article and Find Full Text PDF

Spatiotemporal Mapping of Ultrafine Particle Fluxes in an Office HVAC System with a Diffusion Charger Sensor Array.

ACS EST Air

January 2025

Lyles School of Civil & Construction Engineering, Purdue University, West Lafayette, Indiana 47907, United States.

Commercial HVAC systems intended to mitigate indoor air pollution are operated based on standards that exclude aerosols with smaller diameters, such as ultrafine particles (UFPs, D ≤ 100 nm), which dominate a large proportion of indoor and outdoor number-based particle size distributions. UFPs generated from occupant activities or infiltrating from the outdoors can be recirculated and accumulate indoors when they are not successfully filtered by an air handling unit. Monitoring UFPs in real occupied environments is vital to understanding these source and mitigation dynamics, but capturing their rapid transience across multiple locations can be challenging due to high-cost instrumentation.

View Article and Find Full Text PDF

The motion of the trabecular meshwork (TM) facilitates the aqueous drainage from the anterior chamber to the venous system, thereby maintaining normal intraocular pressure. As such, characterizing the TM motion is valuable for assessing the functionality of the aqueous outflow system, as demonstrated by previous phase-sensitive optical coherence tomography (OCT) studies. Current methods typically acquire motion from a single cross-sectional plane along the circumference of the anterior chamber.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!