Cell infection by adenovirus serotypes 2 and 5 (Ad2/5) initiates with the attachment of Ad fiber to the coxsackievirus and Ad receptor (CAR) followed by alpha(v) integrin-mediated entry. We recently demonstrated that heparan sulfate glycosaminoglycans (HS GAGs) expressed on cell surfaces are involved in the binding and infection of Ad2/5 (M. C. Dechecchi, A. Tamanini, A. Bonizzato, and G. Cabrini, Virology 268:382-390, 2000). The role of HS GAGs was investigated using extracellular soluble domain 1 of CAR (sCAR-D1) and heparin as soluble receptor analogues of CAR and HS GAGs in A549 and recombinant CHO cell lines with differential levels of expression of the two receptors and cultured to various densities. Complete inhibition of binding and infection was obtained by preincubating Ad2/5 with both heparin (10 microg/ml) and sCAR-D1 (200 microg/ml) in A549 cells. Partial inhibition was observed when heparin and sCAR-D1 were preincubated separately with Ad. The level of heparin-sensitive [(3)H]Ad2/5 binding doubled in sparse A549 cells (50 to 70,000 cells/cm(2)) with respect to that of cells grown to confluence (200 to 300,000 cells/cm(2)), in parallel with increased expression of HS GAGs. [(3)H]Ad2 bound to sparse CAR-negative CHO cells expressing HS GAGs (CHO K1). No [(3)H]Ad2 binding was observed in CHO K1 cells upon competitive inhibition with heparin and in HS GAG-defective CHO A745, D677, and E606 clones. HS-sensitive Ad2 infection was obtained in CAR-negative sparse CHO K1 cells but not in CHO A745 cells, which were permissive to infection only upon transfection with CAR. These results demonstrate that HS GAGs are sufficient to mediate the initial binding of Ad2/5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC115122PMC
http://dx.doi.org/10.1128/jvi.75.18.8772-8780.2001DOI Listing

Publication Analysis

Top Keywords

cho cells
12
heparan sulfate
8
sulfate glycosaminoglycans
8
sufficient mediate
8
mediate initial
8
initial binding
8
binding infection
8
a549 cells
8
cho a745
8
cho
7

Similar Publications

Advances in cancer genomics and precision oncology.

Genes Genomics

January 2025

Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Background: Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division.

View Article and Find Full Text PDF

Efficient production of recombinant human FVII in CHO cells using the piggyBac transposon system.

Protein Expr Purif

January 2025

Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China, 518055; Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, P.R. China, 518107. Electronic address:

As an important coagulation factor, activated coagulation factor VII (FVIIa) is mainly used to treat the bleeding of hemophilia patients who have developed inhibitory antibodies against FVIII and FIX conventional treatment. Recombinant human factor VII (rhFVII) produced in mammalian cell lines have been developed as the most important resource of FVIIa. However, cell lines express rhFVII protein derived from an exogenous expression vector at a lower level than most other proteins.

View Article and Find Full Text PDF

Opportunities for microphysiological systems from the view of Japanese industries.

Drug Metab Pharmacokinet

November 2024

Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan.

Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun.

View Article and Find Full Text PDF

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

View Article and Find Full Text PDF

We present the first use of a bioengineered mammalian transposase system derived from Myotis lucifugus (bMLT) for integration of expression vectors into the CHO genome, focusing on GFP and trastuzumab production. Initially, CHO-K1 cells are transfected with a GFP reporter and varying amounts of bMLT DNA or mRNA. GFP expression is monitored over 17 weeks without selective pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!