Fish fast-starts and sprints are rapid kinematic events powered by the lateral myotomal musculature. A distinction can be made between fast-starts and sprint-swimming activity. Fast-starts are kinematic events involving rapid, asymmetrical movements. Sprints involve a series of symmetrical, high-frequency tailbeats that are kinematically similar to lower-frequency, sustained swimming. The patterns of muscle recruitment and strain associated with these swimming behaviours were determined using electromyography and sonomicrometry. Axial patterns of fast muscle recruitment during sprints were similar to those in slow muscle in that the duration of electromyograhic (EMG) activity decreased in a rostro-caudal direction. There was also an axial shift in activity relative to the strain cycle so that activity occurred relatively earlier in the caudal region. This may result in caudal muscle performing a greater proportion of negative work and acting as a power transmitter as well as a power producer. The threshold tailbeat frequency for recruitment of fast muscle differed with location in the myotome. Superficial muscle fibres were recruited at lower tailbeat frequencies and shortening velocities than those deeper in the musculature. During sprints, fast muscle strain ranged from +/- 3.4% l(0) (where l(0) is muscle resting length) at 0.35FL (where FL is fork length) to +/- 6.3% l(0) at 0.65FL. Fast-starts involved a prestretch of up to 2.5% l(0) followed by shortening of up to 11.3% l(0). Stage 1 EMG activity began simultaneously, during muscle lengthening, at all axial locations. Stage 2 EMG activity associated with the major contralateral contraction also commenced during lengthening and proceeded along the body as a wave. Onset of muscle activity during lengthening may enhance muscle power output.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.204.13.2239DOI Listing

Publication Analysis

Top Keywords

fast muscle
16
muscle
12
emg activity
12
kinematic events
8
muscle recruitment
8
stage emg
8
activity
7
fast-starts
5
spatial variation
4
fast
4

Similar Publications

Sarcopenia in independent oldest-old individuals treated for diabetes, with or without metformin: a case-control study.

Acta Diabetol

January 2025

Discipline of Geriatrics and Gerontology, Paulista School of Medicine, Federal University of São Paulo, Rua dos Otonis, 863, Vila Clementino, São Paulo, SP, ZIP CODE 04025-002, Brazil.

Background: Sarcopenia is a common condition in the elderly, especially in diabetics (DM). Metformin (MTF), known to reduce glucose levels, can also be a therapeutic intervention in age-related diseases, although it may contribute to muscle loss.

Objectives: To compare the prevalence of sarcopenia among elderly people treated for DM, with or without MTF, and non-diabetic patients (NDM) and evaluate whether there is an association between the use of MTF and the development of sarcopenia.

View Article and Find Full Text PDF

Metabolic regulation is essential for maintaining homeostasis in response to fluctuating dietary nutrient availability. In this review, we explore how metabolic health can be affected by the temporal alignment between daily behavioural patterns (e.g.

View Article and Find Full Text PDF

Defective Cystic Fibrosis Transmembrane Conductance Regulator Accelerates Skeletal Muscle Aging by Impairing Autophagy/Myogenesis.

J Cachexia Sarcopenia Muscle

February 2025

Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.

Background: Regenerative capacity of skeletal muscles decreases with age. Deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) is associated with skeletal muscle weakness as well as epithelial cell senescence. However, whether and how CFTR plays a role in skeletal muscle regeneration and aging were unclear.

View Article and Find Full Text PDF

Effects of spinal stimulation and short-burst treadmill training on gait biomechanics in children with cerebral palsy.

Gait Posture

January 2025

Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Center for Research and Education on Accessible Technology and Experiences, University of Washington, Seattle, WA, USA. Electronic address:

Background: Children with cerebral palsy (CP) have an injury to the central nervous system around the time of birth that affects the development of the brain and spinal cord. This injury leads to changes in gait neuromechanics, including muscle activity and joint kinematics. Transcutaneous spinal cord stimulation (tSCS) is a novel neuromodulation technique that may improve movement and coordination in children with CP when paired with targeted physical therapy.

View Article and Find Full Text PDF

Type 3 deiodinase activation mediated by the Shh/Gli1 axis promotes sepsis-induced metabolic dysregulation in skeletal muscles.

Burns Trauma

January 2025

Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.

Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!