We have shown previously that the AKT2 pathway is essential for cell survival and important in malignant transformation. In this study, we demonstrate elevated kinase levels of AKT2 and phosphatidylinositol-3-OH kinase (PI3K) in 32 of 80 primary breast carcinomas. The majority of the cases with the activation are estrogen receptor alpha (ERalpha) positive, which prompted us to examine whether AKT2 regulates ERalpha activity. We found that constitutively activated AKT2 or AKT2 activated by epidermal growth factor or insulin-like growth factor-1 promotes the transcriptional activity of ERalpha. This effect occurred in the absence or presence of estrogen. Activated AKT2 phosphorylates ERalpha in vitro and in vivo, but it does not phosphorylate a mutant ERalpha in which ser-167 was replaced by Ala. The PI3K inhibitor, wortmannin, abolishes both the phosphorylation and transcriptional activity of ERalpha induced by AKT2. However, AKT2-induced ERalpha activity was not inhibited by tamoxifen but was completely abolished by ICI 164,384, implicating that AKT2-activated ERalpha contributes to tamoxifen resistance. Moreover, we found that ERalpha binds to the p85alpha regulatory subunit of PI3K in the absence or presence of estradiol in epithelial cells and subsequently activates PI3K/AKT2, suggesting ERalpha regulation of PI3K/AKT2 through a nontranscriptional and ligand-independent mechanism. These data indicate that regulation between the ERalpha and PI3K/AKT2 pathway (ERalpha-PI3K/AKT2-ERalpha) may play an important role in pathogenesis of human breast cancer and could contribute to ligand-independent breast cancer cell growth.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eralpha
13
breast cancer
12
phosphatidylinositol-3-oh kinase
8
estrogen receptor
8
receptor alpha
8
alpha eralpha
8
eralpha activity
8
activated akt2
8
transcriptional activity
8
activity eralpha
8

Similar Publications

Menopause leads to a decline in estrogen levels, resulting in significant metabolic alterations that increase the risk of developing metabolic syndrome-a cluster of conditions including central obesity, insulin resistance, dyslipidemia, and hypertension. Traditional interventions such as hormone replacement therapy carry potential adverse effects, and lifestyle modifications alone may not suffice for all women. This review explores the potential role of palmitoylethanolamide (PEA), an endogenous fatty acid amide, in managing metabolic syndrome during the postmenopausal period.

View Article and Find Full Text PDF

We aim to investigate whether chemical inhibition of NRF2 transcriptional activity (TA) influences distal colon contractions, particularly in an age-dependent manner in females, and whether it impacts oestrogen receptor signalling in female mice. This study was performed on 3 and 6-month-old female mice treated with ML385 (30 mg/kg) or a vehicle for 7 days (i.p.

View Article and Find Full Text PDF

Novel Molecular Classification of Breast Cancer with PET Imaging.

Medicina (Kaunas)

December 2024

Gyula Petrányi Doctoral School of Clinical Immunology and Allergology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.

Breast cancer is a heterogeneous disease characterized by a wide range of biomarker expressions, resulting in varied progression, behavior, and prognosis. While traditional biopsy-based molecular classification is the gold standard, it is invasive and limited in capturing tumor heterogeneity, especially in deep or metastatic lesions. Molecular imaging, particularly positron emission tomography (PET) imaging, offering a non-invasive alternative, potentially plays a crucial role in the classification and management of breast cancer by providing detailed information about tumor location, heterogeneity, and progression.

View Article and Find Full Text PDF

Current Therapeutic Opportunities for Estrogen Receptor Mutant Breast Cancer.

Biomedicines

November 2024

Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA.

Estrogen receptor α (ERα) drives two out of three breast cancers and therefore ERα is a major therapeutic target for ER-positive breast cancer patients. Drugs that inhibit ERα activity or block estrogen synthesis in the body are currently being used in the clinic to treat ER-positive breast cancer and have been quite successful in controlling breast cancer progression for the majority of patients. However, ER-positive breast cancer often becomes resistant to these endocrine therapies, leading to endocrine-resistant metastatic breast cancer, a very aggressive cancer that leads to death.

View Article and Find Full Text PDF

Breast cancer is a global health issue that, when in the metastasis stage, is characterized by the lack of estrogen receptor-α, the progesterone receptor, and human epidermal growth receptor expressions. The present study analyzed the differential gene expression related to the immune system affected by ionizing radiation and estrogen in cell lines derived from an experimental breast cancer model that was previously developed; where the immortalized human breast epithelial cell line MCF-10F, a triple-negative breast cancer cell line, was exposed to low doses of high linear energy transfer α particle radiation (150 keV/μm), it subsequently grew in the presence or absence of 17β-estradiol. Results indicated that interferon-related developmental regulator 1 gene expression was affected in the estrogen-treated cell line; this interferon, as well as the Interferon-Induced Transmembrane protein 2, and the TNF alpha-induced Protein 6 gene expression levels were higher than the control in the Alpha3 cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!