Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In 1984, low-density polyethylene (LDPE) and polymethylsiloxane (PDMS), two primary reference materials (PRM), were made available by the National Heart, Lung, and Blood Institute (NHLBI) as discriminatory tools for the validation of standardized and novel in vitro and in vivo tests in the evaluation of biomaterials. This article reviews the results and conclusions obtained by several studies investigating the hemocompatibility, in vitro biocompatibility, inflammatory response, and in vivo tissue reactions of these two reference materials. Variable results obtained with LDPE and PDMS in ex vivo hemocompatibility studies were attributed to the type of animal model used, the flow velocity of the circulating blood, the time of exposure, and the methodology used to measure blood cell adhesion or activation at the surface of the materials. In contrast, both the LDPE and PDMS appeared to be suitable reference materials when used in in vitro biocompatibility, inflammatory response, and in vivo studies. However, caution must be taken when interpreting the results, because gamma sterilization of these two materials as well as their origin (for example PDMS) are two critically important factors. In conclusion, we see a definite need for standardized hemocompatible parameters and better high-quality hemocompatibility studies on PRM. This review also suggests other materials as potential PRM candidates, namely, Biomer and Intramedic polyethylene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.1043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!