Background: The function of the fission yeast cullins Pcu1p and Pcu4p requires modification by the ubiquitin-related peptide Ned8p. A recent report by Lyapina et al. shows that the COP9/signalosome (CSN), a multifunctional eight subunit complex, regulates Ned8p modification of Pcu1p. Disruption of caa1/csn1, which encodes subunit 1 of the putative S. pombe CSN, results in accumulation of Pcu1p exclusively in the modified form. However, it remained unclear whether this reflects global control of all cullins by the entire CSN complex.
Results: We demonstrate that multiple CSN subunits control Ned8p modification of Pcu3p, another fission yeast cullin, which, in complex with the RING domain protein Pip1p, forms a ubiquitin ligase that functions in cellular stress response. Pcu3p is modified by Ned8p on Lys 729 and accumulates exclusively in the neddylated form in cells lacking the CSN subunits 1, 3, 4, and 5. These CSN subunits co-elute with Pcu3p in gel filtration fractions corresponding to approximately 550 kDa and specifically bind both native and Ned8p-modified Pcu3p in vivo. While CSN does not influence the subcellular localization of Pcu3p, Pcu3p-associated in vitro ubiquitin ligase activity is stimulated in the absence of CSN.
Conclusions: Taken together, our data suggest that CSN is a global regulator of Ned8p modification of multiple cullins and potentially other proteins involved in cellular regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC37391 | PMC |
http://dx.doi.org/10.1186/1471-2091-2-7 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India. Electronic address:
The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Mammalian J-domain protein DNAJC9 interacts with histones H3-H4 and is important for cell proliferation. However, its exact function remains unclear. Here, we show that, in the fission yeast Schizosaccharomyces pombe, loss of Djc9, the ortholog of DNAJC9, renders the histone chaperone Asf1 no longer essential for growth.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, Tianjin 300457, China.
-methyl-L-cysteine sulfoxide (SMCO) is a non-protein sulfur-containing amino acid with a variety of functions. There are few reports on the enzymes catalyzing the biosynthesis of SMCO from -methyl-L-cysteine (SMC). In this study, the flavin-containing monooxygenase gene derived from () was heterologously expressed in BL21(DE3) and the enzymatic properties of the expressed protein were analyzed.
View Article and Find Full Text PDFThe pseudouridylase Pus1 catalyzes pseudouridine (Ψ) formation at multiple uridine residues in tRNAs, and in some snRNAs and mRNAs. Although Pus1 is highly conserved, and mutations are associated with human disease, little is known about eukaryotic Pus1 biology. Here, we show that Schizosaccharomyces pombe pus1Δ mutants are temperature sensitive due to decay of tRNAIle(UAU), as tRNAIle(UAU) levels are reduced, and its overexpression suppresses the defect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!