[Radionuclide methods in the assessment of viability of dyssynergic myocardium in reversible left ventricular dysfunction].

Vestn Rentgenol Radiol

Russian Cardiology Research and Production Complex, Ministry of Public Health of Russian Federation.

Published: December 2001

Download full-text PDF

Source

Publication Analysis

Top Keywords

[radionuclide methods
4
methods assessment
4
assessment viability
4
viability dyssynergic
4
dyssynergic myocardium
4
myocardium reversible
4
reversible left
4
left ventricular
4
ventricular dysfunction]
4
[radionuclide
1

Similar Publications

Multisite synergistic interaction induced selective adsorption of CB5-TiCT complex for strontium ion: A combined theoretical and experimental study.

J Hazard Mater

January 2025

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

In this work, we use a well-defined water-soluble macrocyclic molecule cucurbit[5]uril (CB5) to modify 2D TiCT MXene and assemble a novel high-performance adsorbent CB5-TiCT for Sr ion by density functional theory and experimental methods. The structural stabilities of two distinct types of CB5-TiCT (T = F, O and OH) complexes, i.e.

View Article and Find Full Text PDF

Future Directions in the Treatment of Low-Grade Gliomas.

Cancer J

January 2025

Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL.

There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors.

View Article and Find Full Text PDF

Transthyretin Cardiac Amyloidosis: Current and Emerging Therapies.

Curr Cardiol Rep

January 2025

The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.

Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.

Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.

View Article and Find Full Text PDF

Purpose: None of the antibody-drug conjugates (ADCs) targeting Claudin 18.2 (CLDN18.2) have received approval from regulatory authorities due to their limited clinical benefits.

View Article and Find Full Text PDF

Rapid fabrication and dissolution of pressed Ni/Mg matrix targets for Co production.

EJNMMI Radiopharm Chem

January 2025

Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, 171 76, Sweden.

Background: Beyond the use of conventional short-lived PET radionuclides, there is a growing interest in tracking larger biomolecules and exploring radiotheranostic applications. One promising option for imaging medium-sized molecules and peptides is ⁵⁵Co (T₁/₂ = 17.5 h, β⁺ = 76%), which enables imaging of new and already established tracers with blood circulation of several hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!