Acylation-stimulating protein is an adipocyte-derived protein that has recently been suggested to play an important role in the regulation of triglyceride storage. To date, little information has been reported with regard to fasting acylation-stimulating protein levels and its relation to metabolic control, leptin, and/or lipids in subjects with diabetes mellitus. We therefore evaluated fasting acylation-stimulating protein, leptin, and lipid levels before and 4 months after improving glycemic control with sulfonylurea treatment in a group of poorly controlled obese women with type 2 diabetes and in age- and body mass index-matched nondiabetic obese women. Fasting plasma acylation-stimulating protein (49.67 +/- 19.73 vs. 48.49 +/- 20.70 nmol/liter) and leptin concentrations (33.7 +/- 23.2 vs. 26.2 +/- 10.6 ng/ml) were not significantly different between the groups. Improvement of glycemic control produced parallel falls in fasting blood glucose and hemoglobin A1c. Plasma leptin concentrations were also significantly reduced (33.69 +/- 23.2 vs. 22.73 +/- 11.26 ng/ml; P = 0.036), whereas fasting acylation-stimulating protein concentrations were significantly increased after treatment (48.49 +/- 20.70 vs. 72,82 +/- 29,72 nmol/liter; P = 0.004). Nevertheless, lipids and apolipoprotein B did not significantly improve. We could not find any correlation between elevated acylation-stimulating protein levels and changes in body mass index, glucose, insulin, hemoglobin A1c, leptin, or lipid levels. Similarly, the decrement in circulating leptin levels observed after treatment did not correlate with changes in the levels of glucose, insulin, hemoglobin A1c, or any lipid parameters. We conclude that improved glycemic control increases fasting acylation-stimulating protein and decreases leptin concentrations, but not corrects critical lipid abnormalities in type 2 obese diabetic subjects. Moreover, altered plasma acylation-stimulating protein levels are not associated with changes in body mass index or lipid, leptin, insulin, or glucose levels. Thus, our findings suggest that improved glycemic control or insulin resistance is not responsible for abnormal fatty acid trapping, and failure of lipids to improve after treatment in our patients is consistent with the acylation-stimulating protein resistance concept.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jcem.86.8.7708 | DOI Listing |
BMC Endocr Disord
December 2024
Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
Int Immunopharmacol
May 2024
Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China. Electronic address:
Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α).
View Article and Find Full Text PDFJ Physiol
March 2024
Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, Québec, Québec, Canada.
Adipose tissue, as an endocrine organ, secretes several adipocyte-derived hormones named 'adipokines' that are implicated in regulating energy haemostasis. Substantial evidence shows that white adipose tissue-derived adipokines mediate the link between obesity-related exogenous factors (like diet and lifestyle) and various biological events (such as pre- and postmenopausal status) that have obesity consequences (cardiometabolic disorders). One of the critical aetiological factors for obesity-related diseases is the dysfunction of adipokine pathways.
View Article and Find Full Text PDFFront Immunol
January 2023
Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
Background: It is generally believed that complement system is strongly associated with the risk of nonalcoholic fatty liver disease (NAFLD). However, complement system contains a variety of complement components, and the relationship between complement components and the risk and severity of NAFLD is inconsistent. The aim of this meta-analysis was to evaluate the association of complement components with the risk and severity of NAFLD.
View Article and Find Full Text PDFESC Heart Fail
February 2023
State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Aims: Our previous studies suggested that the complement system was critical in the prognosis of arrhythmogenic right ventricular cardiomyopathy (ARVC). The acylation-stimulating protein (ASP), generated through the alternate complement pathway, was reported to regulate lipogenesis and triglyceride storage. This study aimed to investigate the role of ASP in predicting adverse cardiac events in an ARVC cohort.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!