Cortical synaptic circuitry develops rapidly in the second postnatal week, simultaneous with experience-dependent turnover of dendritic spines. To relate the emergence of sensory maps to synaptogenesis, we recorded synaptic potentials evoked by whisker deflection in layer 2/3 neurons from postnatal day (P) 12 to 20. At P12, synaptic responses were undetectable. Only 2 days later in life (P14), receptive fields had mature organization. Sensory deprivation, if initiated before P14, disrupted receptive field structure. In layer 4, responses and maps were already mature by P12 and insensitive to deprivation, implying that barrel cortex develops from layer 4 to layer 2/3. Thus, P12-14 is a critical period shared by layer 2/3 synapses and their spines, suggesting that spine plasticity is involved in the refinement of maps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0896-6273(01)00360-9 | DOI Listing |
Unlabelled: The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice.
View Article and Find Full Text PDFCurr Res Neurobiol
June 2025
Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres.
View Article and Find Full Text PDFRep Pract Oncol Radiother
December 2024
Department of Radiation Oncology, Medical College and Hospital, Kolkata, India.
Background: Radiation dermatitis (RD) or skin toxicity is one of the most common acute side effects of radiation in head and neck cancer patients. This study aims to correlate the pattern of volumetric-modulated arc therapy (VMAT) dose distribution to the skin with the grades of RD.
Materials And Methods: 80 plans of histopathologically proven squamous cell carcinoma head and neck patients already treated with definitive concurrent chemoradiation [66-70 Gy in 33-35# or 66 Gy in 30# in simultaneous integrated boost (SIB), with concurrent Cisplatin 100 mg/m 3 weekly] at our institution between November 2022 and November 2023 were retrieved from our digital archives.
ACS Nano
January 2025
Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.
We demonstrate the use of [2-(9-carbazol-9-yl)ethyl]phosphonic acid (2PACz) and [2-(3,6-di--butyl-9-carbazol-9-yl)ethyl]phosphonic acid (-Bu-2PACz) as anode modification layers in metal-halide perovskite quantum dot light-emitting diodes (QLEDs). Compared to conventional QLED structures with PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrenesulfonate)/PVK (poly(9-vinylcarbazole)) hole-transport layers, the QLEDs made with phosphonic acid (PA)-modified indium tin oxide (ITO) anodes show an over seven-fold increase in brightness, achieving a brightness of 373,000 cd m, one of the highest brightnesses reported to date for colloidal perovskite QLEDs. Importantly, the onset of efficiency roll-off, or efficiency droop, occurs at ∼1000-fold higher current density for QLEDs made with PA-modified anodes compared to control QLEDs made with conventional PEDOT:PSS/PVK hole transport layers, allowing the devices to sustain significantly higher levels of external quantum efficiency at a brightness of >10 cd m.
View Article and Find Full Text PDFHum Cell
January 2025
Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
This research delves into Primary Hyperoxaluria Type 2 (PH2), an autosomal recessive disorder precipitated by a unique case of compound heterozygous deleterious mutations in the GRHPR gene, specifically the intron2/3 c.214-2 T > G and the exon8 c.864-865delTG, leading to a premature stop codon at p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!