Members of the Myc oncoprotein network (c-Myc, Max, and Mad) play important roles in proliferation, differentiation, and apoptosis. We expressed chimeric green fluorescent protein (GFP) fusions of c-Myc, Max, and three Mad proteins in fibroblasts. Individually, c-Myc and Mad proteins localized in subnuclear speckles, whereas Max assumed a homogeneous nuclear pattern. These distributions were co-dominant and dynamic, however, as each protein assumed the pattern of its heterodimeric partner when the latter was co-expressed at a higher level. Deletion mapping of two Mad members, Mad1 and Mxi1, demonstrated that the domains responsible for nuclear localization and speckling are separable. A non-speckling Mxi1 mutant was also less effective as a transcriptional repressor than wild-type Mxi1. c-Myc nuclear speckles were distinct from SC-35 domains involved in mRNA processing. However, in the presence of co-expressed Max, c-Myc, but not Mad, co-localized to a subset of SC-35 loci. These results show that Myc network proteins comprise dynamic subnuclear structures and behave co-dominantly when co-expressed with their normal heterodimerization partners. In addition, c-Myc-Max heterodimers, but not Max-Mad heterodimers, localize to foci actively engaged in pre-mRNA transcription/processing. These findings suggest novel means by which Myc network members promote transcriptional activation or repression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.onc.1204606 | DOI Listing |
Immunity
December 2024
Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Department of Science Education, Korea National University of Education, Cheongju-si, Republic of Korea;
Background/aim: Glioblastoma is the most malignant brain tumor, and despite advances in treatment, survival rates are still dismal. Therefore, a comprehensive understanding of the underlying molecular mechanisms of glioblastoma is needed. This study suggests potential therapeutic targets in glioblastoma that may provide new therapeutic insights.
View Article and Find Full Text PDFIn Silico Pharmacol
December 2024
Agro-Technology and Rural Development Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam India.
A network pharmacology approach was used to construct comprehensive pharmacological networks, elucidating the interactions between agarwood compounds and key biological targets associated with cancer pathways. We have employed a combination of network pharmacology, molecular docking and molecular dynamics to unravel agarwood plants' active components and potential mechanisms. Reported 23 molecules were collected from the agarwood plants and considered to identify molecular targets.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China. Electronic address:
Ethnopharmacological Relevance: Cordycepin, the main active component of Cordyceps militaris, exhibits various pharmacological activities, including anti-tumor and antioxidant effects. However, its antidepressant effect and the underlying mechanisms remain unclear.
Aim Of Review: This study aimed to explore the antidepressant effect of cordycepin and elucidate the potential molecular mechanisms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!