Inactivation of platelet-derived growth factor-BB following modification by ADP-ribosyltransferase.

Br J Pharmacol

Medicine and Therapeutics (Division of Medicine), Imperial College School of Medicine, Chelsea and Westminster Hospital, London SW10 9NH.

Published: August 2001

1. Arginine-specific ADP-ribosyltransferase (ART1) is expressed on the surface of a number of cell types, and catalyses the transfer of ADP-ribose from NAD(+) to target proteins. We investigated whether extracellular proteins such as growth factors may serve as substrates for this enzyme, with subsequent alteration in their biological activity. Experiments were performed with rat skeletal muscle membranes and V79 Chinese hamster lung fibroblasts with doxycycline-inducible expression of human ART. 2. From a panel of growth factors, platelet-derived growth factor-BB (PDGF-BB) was found to be the best substrate for ART1, whereas the structural homologue PDGF-AA was not a substrate. Under conditions of maximum labelling 5 mol ADP-ribose was incorporated per mol of PDGF-BB. 3. Purified (ADP-ribosyl)-PDGF-BB did not stimulate a mitogenic or chemotactic response in human pulmonary smooth muscle cells, and showed a reduced capacity to bind to PDGF receptors in competition binding experiments, when compared to unmodified PDGF-BB. 4. PDGF-dependent [(3)H-methyl]-thymidine incorporation was measured in the ART1-transfected fibroblast cell line at physiological concentrations of PDGF-BB, and without addition of extracellular NAD(+). Fibroblasts expressing human ART1 at the cell surface showed reduced mitogenic responses to PDGF-BB, but not to PDGF-AA. This loss of mitogenic response in cells expressing ART1 activity was reversed by the addition of agmatine (an ART1 substrate). 5. In conclusion, we propose that PDGF-BB-dependent signalling may be regulated by post-translational modification of the growth factor by ART1 at the cell surface. This has been demonstrated in membranes of rat skeletal muscle, and the reaction confirmed in ART1-transfected fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1621139PMC
http://dx.doi.org/10.1038/sj.bjp.0704187DOI Listing

Publication Analysis

Top Keywords

platelet-derived growth
8
growth factor-bb
8
growth factors
8
rat skeletal
8
skeletal muscle
8
art1 cell
8
cell surface
8
art1
6
growth
5
pdgf-bb
5

Similar Publications

Introduction: Human amniotic membrane (hAM) has a highly biocompatible natural scaffold that is abundant in several extracellular matrix (ECM) components, including but not limited to platelet-derived growth factor (PDGF), transforming growth factor (TGF), and fibroblast growth factor (FGF). In our study, we have focused on a mixture of hAM and demineralized bone matrix (DBM) as an allo-hybrid graft to deliver it into the site of bone defect to decrease bone remodeling time.

Methods: Allo-hybrid grafts were prepared by coating the jelly made of decellularized and lyophilized hAM (AMJ) on the surface of DBM and subsequently underwent in vitro studies, such as alkaline phosphatase activity, MTT assay, and SEM analysis.

View Article and Find Full Text PDF

The causal association between cardiovascular proteins and diabetic nephropathy: a Mendelian randomization study.

Int Urol Nephrol

January 2025

Department of Nephrology, Jiangxi Medical College, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.

Purpose: To clarify the causal association between cardiovascular proteins and diabetic nephropathy (DN) in Europeans.

Methods: The large genome-wide association study data of cardiovascular proteins and DN were used for this two-sample Mendelian randomization (MR) analysis. We took the Inverse variance weighted (IVW) as the primary method.

View Article and Find Full Text PDF

Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care.

Trends Biotechnol

January 2025

Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:

Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate.

View Article and Find Full Text PDF

Pericytes mediate neuroinflammation via Fli-1 in endotoxemia and sepsis in mice.

Inflamm Res

January 2025

Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.

Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.

View Article and Find Full Text PDF

Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!