New transformations of CO(2) at high pressures and temperatures.

Phys Rev Lett

Geophysical Laboratory and Center for High-Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, D.C. 20015, USA.

Published: August 2001

CO(2) laser heating of solid CO(2) at pressures between 30 and 80 GPa shows that this compound breaks down to oxygen and diamond along a boundary having a negative P-T slope. This decomposition occurs at temperatures much lower than predicted in theory or inferred from previous experiment. Raman spectroscopy and x-ray diffraction were used as structural probes. At pressures higher than 40 GPa the decomposition is preceded by the formation of a new CO(2) phase (CO(2)-VI). These findings limit the stability of nonmolecular CO(2) phases to moderate temperatures and provide a new topology of the CO(2) phase diagram.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.87.075701DOI Listing

Publication Analysis

Top Keywords

co2 phase
8
co2
5
transformations co2
4
co2 high
4
high pressures
4
pressures temperatures
4
temperatures co2
4
co2 laser
4
laser heating
4
heating solid
4

Similar Publications

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

Continuous Electrochemical Carbon Capture via Redox-Mediated pH Swing─Experimental Performance and Process Modeling.

J Phys Chem Lett

January 2025

Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wyb. St. Wyspiańskiego 27, 50-370 Wrocław, Poland.

We investigate a continuous electrochemical pH-swing method to capture CO from a gas phase. The electrochemical cell consists of a single cation-exchange membrane (CEM) and a recirculation of a mixture of salt and phenazine-based redox-active molecules. In the absorption compartment, this solution is saturated by CO from a mixed gas phase at high pH.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) and CO-based geothermal energy are promising technologies for reducing CO emissions and mitigating climate change. Safe implementation of these technologies requires an understanding of how CO interacts with fluids and rocks at depth, particularly under elevated pressure and temperature. While CO-bearing aqueous solutions in geological reservoirs have been extensively studied, the chemical behavior of water-bearing supercritical CO remains largely overlooked by academics and practitioners alike.

View Article and Find Full Text PDF

Background: Shake flasks are essential tools in biotechnological development due to their cost efficiency and ease of use. However, a significant challenge is the miniaturization of process analytical tools to maximize information output from each cultivation. This study aimed to develop a respiration activity online measurement system via off-gas analysis, named "Transfer rate Online Measurement" (TOM), for determining the oxygen transfer rate (OTR), carbon dioxide transfer rate (CTR), and the respiration quotient (RQ) in surface-aerated bioreactors, primarily targeting shake flasks.

View Article and Find Full Text PDF

Although microporous carbons can perform well for CO2 separations under high pressure conditions, their energy-demanding regeneration may render them a less attractive material option. Here, we developed a large-pore mesoporous carbon with pore sizes centered around 20-30 nm using a templated technical lignin. During the soft-templating process, unique cylindrical supramolecular assemblies form from the copolymer template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!