Mutation screening of manganese superoxide dismutase in amyotrophic lateral sclerosis.

Neuroreport

Department of Neurology, University of Sheffield, E Floor, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.

Published: August 2001

Seventy-seven cases of ALS were screened for mutations in the manganese superoxide dismutase gene (SOD2). DNA was extracted from CNS tissue and screened using single stranded conformation polymorphism and heteroduplex analysis. No mutations were identified in the entire coding region of the SOD2 gene. The known polymorphism in the mitochondrial targeting sequence was identified. No association was found between this polymorphism and ALS. A further polymorphism was detected in the intronic sequence upstream of exon 4, though no association with ALS was demonstrated. We therefore conclude that mutations in SOD2 do not appear to cause ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00001756-200108080-00008DOI Listing

Publication Analysis

Top Keywords

manganese superoxide
8
superoxide dismutase
8
mutation screening
4
screening manganese
4
dismutase amyotrophic
4
amyotrophic lateral
4
lateral sclerosis
4
sclerosis seventy-seven
4
seventy-seven cases
4
als
4

Similar Publications

Mechanisms of Aluminum Toxicity Impacting Root Growth in Shatian Pomelo.

Int J Mol Sci

December 2024

Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.

Aluminum (Al) toxicity in acidic soils poses significant challenges to crop growth and development. However, the response mechanism of Shatian pomelo ( 'Shatian Yu') roots to Al toxicity remains poorly understood. This study employed root phenotype analysis, physiological response index measurement, root transcriptome analysis, and quantitative PCR (qPCR) validation to investigate the effects of Al toxicity on Shatian pomelo roots.

View Article and Find Full Text PDF

White tea has been scientifically proven to exhibit positive biological effects in combating chronic diseases, including cancer, metabolic syndrome, etc. Nevertheless, the anti-aging activity and mechanism of white tea on organisms exposed to a high-fat diet remain unexplored. Herein, we prepared a white tea aqueous extract (WTAE) from white peony in Fuding and assessed its in vivo antioxidant and anti-aging effects by employing a senescence model induced by lard, delving into the underlying molecular mechanisms through which the WTAE contributes to lifespan improvement.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are double-edged swords in biological systems-they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics-synthetic compounds designed to replicate MnSOD's antioxidant activity.

View Article and Find Full Text PDF

Dioxygen (O) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O or C-H bonds.

View Article and Find Full Text PDF

Dual-domain superoxide dismutase: In silico prediction directed combinatorial mutation for enhanced robustness and catalytic efficiency.

Int J Biol Macromol

December 2024

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:

The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!