Objective: We have previously shown that Adenovirus-p53 (Ad-p53) is a potent inducer of apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2 and that Apo2L/TRAIL is a potent inducer of apoptosis, independent of bcl-2. A study was designed to test the synergy between Ad-p53 and Apo2L/TRAIL in the induction of apoptosis in relation to the expression of DR4/DR5 and DcR1, in cells undergoing Ad-p53-induced apoptosis.

Methods: Replication deficient Ad-p53 and human recombinant Apo2L/TRAIL were used. Myeloma cells with mutated/w.t. p53 and varying expression of bcl-2 were used to test the effect of Ad-p53, Apo2L/TRAIL, or both, on apoptosis, measured by annexin V.

Results: Treatment with Ad-p53 resulted in a dose-dependent apoptosis concomitant with a dose-dependent increase in the expression of DR4/DR5 and a decrease in the expression of DcR1, in Ad-p53-sensitive cell lines. In these cells, addition of Apo2L/TRAIL to cells treated with Ad-p53 resulted in a dose-dependent increase in apoptosis. Myeloma cells resistant to Ad-p53 had high levels of DR4/DR5 and high levels of DcR1 and treatment with Ad-p53 did not reduce the expression of DcR1. Also, addition of Apo2L/TRAIL to Ad-p53 did not affect the level of apoptosis beyond the level of apoptosis observed with Apo2L/TRAIL alone.

Conclusions: 1) Cotreatment with Ad-p53 and Apo2L/TRAIL resulted in additive apoptosis in myeloma cells expressing nonfunctional p53 and low levels of bcl-2. 2) Resistance to Ad-p53 or to the combination of Ad-p53 and Apo2L/TRAIL was not due to the lack of adenovirus receptor (CAR) or low expression of DR4/DR5 but rather due to the relatively high expression of DcR1 receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0301-472x(01)00677-4DOI Listing

Publication Analysis

Top Keywords

apoptosis myeloma
16
myeloma cells
16
ad-p53 apo2l/trail
16
ad-p53
12
expression dr4/dr5
12
expression dcr1
12
apoptosis
10
apo2l/trail
9
induction apoptosis
8
cell lines
8

Similar Publications

Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.

View Article and Find Full Text PDF

Aims: To investigate the biological impact of simultaneous overexpression of lncRNA MEG3 and miR-155, termed a "double hit," on multiple myeloma (MM) cells compared to individual biomarker substitution.

Materials And Methods: Human MM cells were transfected with MEG3-overexpressed plasmids and miR-155 mimics. Cell cytotoxicity, apoptosis, and gene expression were evaluated in transfected cells and clinical samples.

View Article and Find Full Text PDF

Osteocytes are the main cells in mineralized bone tissue. Elevated osteocyte apoptosis has been observed in lytic bone lesions of patients with multiple myeloma. However, their precise contribution to bone metastasis remains unclear.

View Article and Find Full Text PDF

Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells.

Acta Pharm Sin B

December 2024

Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity.

View Article and Find Full Text PDF

Background: Targeting exportin1 (XPO1) with Selinexor (SEL) is a promising therapeutic strategy for patients with multiple myeloma (MM). However, intrinsic and acquired drug resistance constitute great challenges. SEL has been reported to promote the degradation of XPO1 protein in tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!