alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)-mediated neurotoxicity was studied in relation to subunit expression and the presence of Ca(2+)-permeable receptor channels. AMPA-mediated toxicity had two components: 1) a direct AMPA-R-mediated component, which was not due to Ca(2+) influx through voltage-gated Ca(2+) channels, reversal of the Na(+)/Ca(2+) exchanger or release of calcium from dantrolene-sensitive intracellular Ca(2+) stores, and 2) a minor, indirect component involving activation of NMDA receptor channels, because of glutamate release and removal of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined. The number of neurons possessing Ca(2+)-permeable AMPA-R increased during culture development, concurrently with an increasing susceptibility for AMPA-induced toxicity during development. GluR2(R) levels also increased during development, and channel blockers of Ca(2+)-permeable AMPA-R lacking the GluR2(R) subunit (spermine and philanthotoxin) failed to prevent neurotoxicity or increases in [Ca(2+)](i). Thus, the direct AMPA-R-mediated toxicity may be explained by initiation of cell death by Ca(2+) fluxing through AMPA-R containing GluR2(R). The components of direct AMPA-R-mediated toxicity are proposed to be 1) toxicity mediated by GluR2(R)-lacking AMPA-R and 2) toxicity mediated by low-Ca(2+)-permeability AMPA-R containing GluR2(R).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.1150 | DOI Listing |
Mol Neurodegener
May 2018
Department of Neurology, Knight Alzheimer's Disease Research Center, Hope Center for Neurological Disorders, Washington University School of Medicine, Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO, 63110, USA.
Background: Extracellular aggregation of the amyloid-β (Aβ) peptide into toxic multimers is a key event in Alzheimer's disease (AD) pathogenesis. Aβ aggregation is concentration-dependent, with higher concentrations of Aβ much more likely to form toxic species. The processes that regulate extracellular levels of Aβ therefore stand to directly affect AD pathology onset.
View Article and Find Full Text PDFJ Biol Chem
November 2004
Department of Pharmacal Sciences, Auburn University, Auburn, Alabama 36849, USA.
The highly negatively charged polysialic acid (PSA) is a carbohydrate predominantly carried by the neural cell adhesion molecule (NCAM) in mammals. NCAM and, in particular, PSA play important roles in cellular and synaptic plasticity. Here we investigated whether PSA modulates the activity of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) subtype of glutamate receptors (AMPA-Rs).
View Article and Find Full Text PDFJ Neurosci Res
August 2001
The Royal Danish School of Pharmacy, NeuroScience PharmaBiotech Research Center, Department of Pharmacology, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R)-mediated neurotoxicity was studied in relation to subunit expression and the presence of Ca(2+)-permeable receptor channels. AMPA-mediated toxicity had two components: 1) a direct AMPA-R-mediated component, which was not due to Ca(2+) influx through voltage-gated Ca(2+) channels, reversal of the Na(+)/Ca(2+) exchanger or release of calcium from dantrolene-sensitive intracellular Ca(2+) stores, and 2) a minor, indirect component involving activation of NMDA receptor channels, because of glutamate release and removal of the Mg(2+) block of the NMDA receptor on AMPA-R stimulation. The involvement of Ca(2+) influx through AMPA-R was also examined.
View Article and Find Full Text PDFJ Neurosci
October 1999
Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093, USA.
At many mature vertebrate glutamatergic synapses, excitatory transmission strength and plasticity are regulated by AMPA and NMDA receptor (AMPA-R and NMDA-R) activation and by patterns of presynaptic transmitter release. Both receptors potentially direct neuronal differentiation by mediating postsynaptic Ca(2+) influx during early development. However, the development of synaptic receptor expression and colocalization has been examined developmentally in only a few systems, and changes in release properties at neuronal synapses have not been characterized extensively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!