AI Article Synopsis

Article Abstract

Receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR) play an important role in a variety of malignant neoplasias, making the search for aberrations in the relevant chromosomes an important issue. Differential expression of the EGFR gene was investigated by reverse transcriptase (RT)-PCR on tissue samples of normal skin, nevi, primary melanomas, and melanoma metastases. The EGFR gene is located on chromosome 7p12.3-p12.1. To determine the number of chromosomes 7 in cell nuclei of the mentioned tissue samples we performed fluorescence in situ hybridization (FISH) on touch preparations, using a DNA probe that hybridizes specifically to the centromeric region of chromosome 7. Additionally, chromosome 7 number in interphase nuclei was determined in short-term primary cell cultures of nevi, primary melanomas, and metastases. The highest EGFR gene expression frequency was found in melanoma metastases. By FISH we detected the highest fraction of cell nuclei with more than two chromosomes 7 in the group of metastases. Our results suggest that overexpression of the EGFR gene might play an important role in metastasis of malignant melanoma. This is well reflected by polysomy 7, possibly accounting for an increased EGFR gene copy number.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1505589PMC
http://dx.doi.org/10.1038/sj.neo/7900156DOI Listing

Publication Analysis

Top Keywords

egfr gene
20
nevi primary
12
chromosome aneusomy
8
epidermal growth
8
growth factor
8
factor receptor
8
melanomas metastases
8
play role
8
tissue samples
8
primary melanomas
8

Similar Publications

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

PCBP2-dependent secretion of miRNAs via extracellular vesicles contributes to the EGFR-driven angiogenesis.

Theranostics

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.

The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor (EGFR) gene mutation testing is crucial for the administration of tyrosine kinase inhibitors to treat non-small cell lung cancer. In addition to traditional tissue-based tests, liquid biopsies using plasma are increasingly utilized, particularly for detecting T790M mutations. This study compared tissue- and plasma-based EGFR testing methods.

View Article and Find Full Text PDF

Drug resistance poses a major obstacle to the efficient treatment of colorectal cancer (CRC), which is one of the cancers that kill people most often in the United States. Advanced colorectal cancer patients frequently pass away from the illness, even with advancements in chemotherapy and targeted therapies. Developing new biomarkers and therapeutic targets is essential to enhancing prognosis and therapy effectiveness.

View Article and Find Full Text PDF

Titanium nanostructure mitigating doxorubicin-induced testicular toxicity in rats via regulating major autophagy signaling pathways.

Toxicol Rep

June 2025

Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, El Buhouth St., Dokki, Cairo 12622, Egypt.

Doxorubicin (DOX) is a powerful antineoplastic FDA-approved anthracycline-derived antibiotic and is considered as the most suitable intervention for solid tumors and hematological cancers therapy. However, its therapeutic application is highly limited due to acute and chronic renal, hematological and testicular toxicity. Oxidative stress, lipid peroxidation and apoptosis in germ cells as well as low sperm count, motility and disturbing steroidogenesis are the principal machineries of DOX-induced testicular toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!