Redistribution of specialized molecules in migrating cells develops asymmetry between two opposite cell poles, the leading edge and the uropod. We show that acquisition of a motile phenotype in T lymphocytes results in the asymmetric redistribution of ganglioside GM3- and GM1-enriched raft domains to the leading edge and to the uropod, respectively. This segregation to each cell pole parallels the specific redistribution of membrane proteins associated to each raft subfraction. Our data suggest that raft partitioning is a major determinant for protein redistribution in polarized T cells, as ectopic expression of raft-associated proteins results in their asymmetric redistribution, whereas non-raft-partitioned mutants of these proteins are distributed homogeneously in the polarized cell membrane. Both acquisition of a migratory phenotype and SDF-1alpha-induced chemotaxis are cholesterol depletion-sensitive. Finally, GM3 and GM1 raft redistribution requires an intact actin cytoskeleton, but is insensitive to microtubule disruption. We propose that membrane protein segregation not only between raft and nonraft domains but also between distinct raft subdomains may be an organizational principle that mediates redistribution of specialized molecules needed for T cell migration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55505 | PMC |
http://dx.doi.org/10.1073/pnas.171160298 | DOI Listing |
Phlebology
January 2025
Department of Vascular Surgery, University Hospital Leipzig, Leipzig, Germany.
Aim: This study aimed to develop a web-based machine learning (ML) model to predict the lifetime likelihood of developing varicose veins using global disease prevalence data.
Methods: We utilized data from a systematic review, registered under PROSPERO (CRD42021279513), which included 81 studies on varicose vein prevalence across various geographic regions. The data used to build the ML model included disease prevalence as the outcome (%), along with the following predictors: mean age, gender distribution (%), mean body mass index (BMI) of the study cohort, and the mean gravity field of the study region (mGal), representing variations in Earth's underground mass distribution that influence blood and fluid redistribution in the human body, affecting disease prevalence.
Epigenetics
December 2025
Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of followed by mutations in epigenetic regulators , , and . Mutations in , a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Departments of Surgery and Oncology, University of Calgary Arnie Charbonneau Cancer Institute, University of Calgary.
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, United States.
Spaceflight-Associated Neuro-Ocular Syndrome (SANS) presents a critical risk in long-duration missions, with microgravity-induced changes that threaten astronaut vision and mission outcomes. Current SANS monitoring, limited to pre- and post-flight exams, lacks in-flight diagnostics, highlighting an urgent need for autonomous tools capable of real-time assessment. Grok, an AI platform by xAI, offers promising potential as an advanced diagnostic tool for space-based health monitoring.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!