Galactocerebrosidase (GALC) is deficient in all tissues from human patients and animal models with globoid cell leukodystrophy (GLD) or Krabbe disease. The deficiency results in decreased lysosomal catabolism of certain galactolipids including galactosylceramide and psychosine that are synthesized maximally during myelination. According to current theories, the accumulation of psychosine in humans and animals with GLD induces oligodendrocyte degeneration and myelination ceases. Transduction of oligodendrocytes from twitcher mice with a retroviral vector containing the GALC cDNA can correct the enzyme deficiency in these cells. Our data show that twitcher astrocytes and oligodendrocytes can internalize exogenous GALC, as well as donate the enzyme to the mutant glial cells. Antibodies against human GALC localized the GALC antigen in retrovirally transduced cells and cells receiving enzyme via cell to cell secretion and uptake to the lysosomal fraction. In fact immunocytochemical studies in transduced oligodendrocytes revealed that the GALC colocalizes in vesicles lysosomal-associated membrane protein-2 (LAMP2) (+). Moreover, labeling cells with anti-GALC and a marker for oligodendrocytes demonstrated that, upon differentiation, transduced, twitcher oligodendrocytes attained the normal branched process configuration, while untransduced cells show only abnormal morphology. Phenotype correction in mutant oligodendrocytes has also been observed after enzyme transfer. These studies indicate that GALC activity supplied to cultured oligodendrocytes from twitcher mice by different methods can correct the pathological phenotype of these cells.

Download full-text PDF

Source
http://dx.doi.org/10.1006/nbdi.2001.0407DOI Listing

Publication Analysis

Top Keywords

cells
8
glial cells
8
phenotype correction
8
oligodendrocytes twitcher
8
twitcher mice
8
galc
7
oligodendrocytes
7
twitcher
5
retrovirus-mediated gene
4
gene transfer
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Stress and telomere length in leukocytes: Investigating the role of GABRA6 gene polymorphism and cortisol.

Psychoneuroendocrinology

January 2025

Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium. Electronic address:

Telomere length (TL) is considered a biomarker of aging, and short TL in leukocytes is related to age and stress-related health problems. Cumulative lifetime stress exposure has also been associated with shorter TL and age-related health problems, but the mechanisms are not well understood. We tested in 108 individuals whether shorter TL in leukocytes is observed in individuals with the GABRA6 TT genotype, which has been associated with dysregulation of hypothalamic-pituitary-adrenal axis activity (the main biological stress system) compared to the CC genotype.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Progenitor effect in the spleen drives early recovery via universal hematopoietic cell inflation.

Cell Rep

January 2025

Division of Cell Regulation, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Cell Engineering, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan. Electronic address:

Hematopoietic stem cells (HSCs) possess the capacity to regenerate the entire hematopoietic system. However, the precise HSC dynamics in the early post-transplantation phase remain an enigma. Clinically, the initial hematopoiesis in the post-transplantation period is critical, necessitating strategies to accelerate hematopoietic recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!