Expression microarrays are often constructed by the immobilization of PCR products on two-dimensional modified glass slides or on three-dimensional microporous substrates. In this study we investigate whether the length of the immobilized species and the substrate choice influence hybridization dynamics. Using a simple bimolecular mass action controlled model to describe hybridization, we observed that the extent of hybridization and the initial velocities were directly dependent on the length of the immobilized species. An inflection point was noted at a length of 712 bases, above which the influence of length on hybridization rate decreased. Interestingly, we observed no differences in these parameters whether hybridization occurred on a two- or three-dimensional surface. Furthermore, the affinity of the solution phase labeled species for the immobilized species was identical for all arrayed lengths on both surfaces. These data indicate a similar interaction of the noncovalently immobilized species with either surface. Finally, we have determined that competitive hybridization on expression microarrays is nonlinear with respect to time and concentration of competitor. This observation is critical for analysis of expression array data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abio.2001.5212 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!