The ability to truly interface living cells with intelligent semiconducting biomaterials will launch new post-digital technology involving biologically interfaced medical devices. This article examines the potential of porous silicon for use in cell-interfaced electronic devices.
Download full-text PDF |
Source |
---|
Angew Chem Int Ed Engl
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, PR China.
Silver bismuth sulfide nanocrystals (AgBiS NCs) embody a pioneering heavy-metal-free photovoltaic material renowned for its ultrahigh absorption coefficient, offering promising opportunities for advancing the field of ultra-thin and biocompatible solar cells. Currently, the fabrication of AgBiS NC photovoltaic devices relies on hot-injection synthesis and subsequent tedious ligand exchange, leading to high production cost, complex processes and environmental pollution. Here, we developed a direct-synthesis (DS) method without ligand-exchange for AgBiS NC semiconductive inks, significantly simplifying the material preparation and device fabrication processes.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
Mater Horiz
November 2024
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
A variety of therapeutic strategies are available to treat glioblastoma (GBM), but the tumor remains one of the deadliest due to its aggressive invasiveness, restrictive blood-brain barrier (BBB), and exceptional resistance to drugs. In this study, we present a hydrogen sulfide (HS)-generating semiconducting polymer nanoparticle (PFeD@Ang) for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma. Our results show that in an acidic tumor microenvironment (TME), HS donors produce large amounts of HS, which inhibits mitochondrial respiration and alleviates cellular hypoxia, thus enhancing the radiodynamic effect during X-ray irradiation; meanwhile, Fe is reduced to Fe by tannic acid in an acidic TME, which promotes an iron-dependent cell death process in tumors.
View Article and Find Full Text PDFNano Lett
November 2024
Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117576.
Phase engineering of two-dimensional (2D) transition metal dichalcogenides (TMDs) is an attractive avenue to construct new surface-enhanced Raman scattering (SERS) substrates. Herein, 2D WS and MoS monolayers with high-purity distorted octahedral phase (1T') are prepared for highly sensitive SERS detection of analytes (e.g.
View Article and Find Full Text PDFACS Omega
September 2024
Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, M. Strzody 9, Gliwice 44-100, Poland.
This study investigates a supramolecular approach to elucidate the interaction between an organic semiconducting molecule, specifically butyric acid-functionalized perylene diimide, and a block copolymer comprising poly-3-hexyl thiophene-b-polyethylene glycol. This interaction results in the formation of a precisely structured nanoarchitecture within the supramolecular block copolymer, driven by the ionic interplay between the block copolymer and small organic molecules. The optical properties of the synthesized supramolecular block copolymer were characterized by using ellipsometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!