Release of amyloid beta (Abeta) from the amyloid precursor protein (APP) requires cleavages by beta- and gamma-secretases and plays a crucial role in Alzheimer's disease (AD) pathogenesis. Missense mutations in the APP gene causing familial AD are clustered around the beta-, alpha- and particular gamma-secretase cleavage sites. We systematically compare in primary neurons the effect on APP processing of a series of clinical APP mutations (two of which not characterized before) located in close proximity to the gamma-secretase cleavage site. We confirm and extend previous observations showing that all these mutations (T714I, V715M, V715A, I716V, V717I and V717L) affect gamma-secretase cleavage causing an increased relative ratio of Abeta42 to Abeta40. Taking advantage of these extended series of APP mutations we were able to demonstrate an inverse correlation between these ratios and the age at onset of the disease in the different families. In addition, a subset of mutations caused the accumulation of APP C-terminal fragments indicating that these mutations also influence the stability of APP C-terminal fragments. However, it is unlikely that these fragments contribute significantly to the disease process.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/10.16.1665DOI Listing

Publication Analysis

Top Keywords

gamma-secretase cleavage
16
app mutations
12
app c-terminal
12
cleavage site
8
app
8
c-terminal fragments
8
mutations
7
pathogenic app
4
gamma-secretase
4
mutations gamma-secretase
4

Similar Publications

The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.

View Article and Find Full Text PDF

This study describes an intramolecular quenching assay to evaluate gamma-secretase (GS) enzyme activity in human dermal cells. The method utilizes a fluorogenic peptide substrate, mimicking a fragment of amyloid precursor protein (APP), in which a quencher suppresses the fluorescence of a fluorophore until enzymatic cleavage occurs, resulting in a measurable increase in fluorescence. This real-time, direct measurement of GS activity allows for precise kinetic analysis using Michaelis-Menten modeling to define Kd and Vmax.

View Article and Find Full Text PDF

APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer's disease.

J Clin Invest

January 2025

Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • Posttranslational modification (PTM) of the amyloid precursor protein (APP), particularly lactylation, is linked to the development of Alzheimer's disease (AD), but its specific role is still unclear.
  • Research showed reduced APP lactylation in AD patients and models, identifying lysine 612 as a key lactylation site, which affects APP processing and Aβ generation.
  • A lactyl-mimicking mutant enhanced APP trafficking and reduced cognitive decline by modifying APP interactions, suggesting that targeting APP lactylation may offer new therapeutic avenues for Alzheimer's disease.
View Article and Find Full Text PDF

Structural basis of human γ-secretase inhibition by anticancer clinical compounds.

Nat Struct Mol Biol

December 2024

Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.

Aberrant activation of Notch signaling, mediated by the Notch intracellular domain (NICD), is linked to certain types of cancer. The NICD is released through γ-secretase-mediated cleavage of the Notch receptor. Therefore, development of a γ-secretase inhibitor (GSI) represents an anticancer strategy.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) is linked to secretases, which are enzymes that cleave proteins, playing a vital role in regulating key factors like amyloid precursor protein (APP) and Notch that influence both AD and cancer.
  • The article details the functions, cleavage sites, and biological roles of six secretase types (α, β, γ, δ, ε, η) and highlights their similarities and differences in how they interact with APP and Notch to affect disease progression.
  • It also discusses the potential of secretase inhibitors as a treatment strategy in AD and cancer, reviewing their chemical structures, current research stages, and future development prospects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!