Interaction between Cryptosporidium oocysts and water treatment coagulants.

Water Res

Australian Water Technologies, West Ryde, NSW.

Published: September 2001

The electrokinetic properties of gamma-irradiated Cryptosporidium oocysts in the presence of coagulants (ferric chloride and alum) and coagulant aids (DADMAC based cationic polyelectrolytes) have been studied. The zeta potential of the oocysts was unaffected by the addition of ferric chloride at all pH values (3-10) studied. Addition of alum resulted in reversal of the oocysts charge, which suggests that the initial stage in the coagulation process leading to floc formation proceeds via the adsorption of hydrolysed aluminium species. The cationic polyelectrolyte Magnafloc LT35 was adsorbed onto iron flocs at doses of 0.1 mg/L even against an electrostatic barrier. The cationic polyelectrolyte only adsorbed and caused charge reversal at the oocyst surface at around 0.4 mg/L, suggesting a lower affinity for this surface. These results indicate that the oocysts, unlike inorganic colloidal materials such as metal oxides, appear to possess a lower surface density of active or charged sites. The lower density of sites, combined with the rapid precipitation of iron salts, may be responsible for the lack of specific adsorption of either hydroxylated ferric species or primary iron hydroxide particles on the oocysts. Further, this suggests that a process of sweep flocculation, where oocysts are engulfed in flocs during coagulation and floc formation, is the more likely mechanism involved. By comparison, it is likely that the specific interaction of hydrolysed aluminium species with the oocysts surface would result in a stronger link at the oocyst-floc interface and that the flocculation process may initially proceed via charge neutralisation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0043-1354(01)00044-6DOI Listing

Publication Analysis

Top Keywords

oocysts
8
cryptosporidium oocysts
8
ferric chloride
8
floc formation
8
hydrolysed aluminium
8
aluminium species
8
cationic polyelectrolyte
8
interaction cryptosporidium
4
oocysts water
4
water treatment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!