The soluble interleukin 6 receptor alpha is an agonistic molecule of interleukin 6 (IL-6) and is important in the biology of multiple myeloma. More precisely, it potentiates the deleterious effects of IL-6 during tumour progression, facilitating angiogenesis and bone resorption. Because the mechanisms involved in the shedding of the interleukin 6 receptor alpha (IL-6Ralpha) in multiple myeloma are not known, we have investigated them in the XG-6 human myeloma cell line. Here we provide evidence that PMA-induced IL-6Ralpha shedding is controlled by a metalloproteinase and by protein kinase C (PKC) isoenzymes that do not require Ca(2+) for their activation. We show that XG-6 cells express PKC-delta, -eta and -zeta isoenzymes. However, after stimulation with PMA, only PKC-delta and PKC-eta are activated, as shown by their translocation to the membrane. Treatment with PMA induces an increase in PKC-delta phosphorylation in its active loop. In addition, by using rottlerin, a specific inhibitor of PKC-delta, we demonstrate that PKC-delta is involved in the PMA-induced shedding of IL-6Ralpha. With the use of UO126, a specific inhibitor of the mitogen-activated protein kinase (MAPK) pathway, we show that the PMA-induced IL-6Ralpha shedding is mediated in part by the MAPK pathway. Finally, whereas GF109203X, a general PKC inhibitor, inhibits the activation of ERK1/2 (extracellular signal-regulated protein kinase 1/2), rottlerin has no inhibitory effect, indicating that the Ras/MAPK activation is PKC-dependent but PKC-delta-independent. Taken together, these results suggest that the PMA-induced shedding of IL-6Ralpha is mediated by a PKC isoenzyme network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222047 | PMC |
http://dx.doi.org/10.1042/0264-6021:3580193 | DOI Listing |
BMC Cancer
January 2025
Department of Biomedical Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, P.O. Box 79, Ethiopia.
Background: Chemotherapy is a well-established therapeutic approach for several malignancies, including breast cancer (BCa). However, the clinical efficacy of this drug is limited by cardiotoxicity. Assessing multiple cardiac biomarkers can help identify patients at risk of adverse outcomes from chemotherapy.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Biomedical Sciences, Western University of Health Sciences, Lebanon, OR, 97355, USA.
Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Research and Innovation Center, Shanghai Pudong Hospital, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
Investigating plasma proteomic signatures of dementia offers insights into its pathology, aids biomarker discovery, supports disease monitoring, and informs drug development. Here, we analyzed data from 48,367 UK Biobank participants with proteomic profiling. Using Cox and generalized linear models, we examined the longitudinal associations between proteomic signatures and dementia-related phenotypes.
View Article and Find Full Text PDFLife Sci
January 2025
S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongton-gu, Suwon 16502, Republic of Korea. Electronic address:
Aims: Fibroblast growth factor (FGF) is a broad class of secretory chemicals that act via FGF receptors (FGFR). The study aims to explore the role of a novel peptide, FAP1 (FGFR-agonistic peptide 1), in tissue regeneration and repair. It investigates whether FAP1 mimics basic fibroblast growth factor (bFGF) and accelerates wound healing both in vitro and in vivo.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
FMS-like tyrosine kinase-3 (FLT3), a class 3 receptor tyrosine kinase, can be activated by mutations of internal tandem duplication (FLT3-ITD) or point mutations in the tyrosine kinase domain (FLT3-TKD), leading to constitutive activation of downstream signaling cascades, including the JAK/STAT5, PI3K/AKT/mTOR and RAS/MAPK pathways, which promote the progression of leukemic cells. Despite the initial promise of FLT3 inhibitors, the discouraging outcomes in the treatment of FLT3-ITD-positive acute myeloid leukemia (AML) promote the pursuit of more potent and enduring therapeutic approaches. The histone acetyltransferase complex comprising the E1A binding protein P300 and its paralog CREB-binding protein (p300/CBP) is a promising therapeutic target, but the development of effective p300/CBP inhibitors faces challenges due to inherent resistance and low efficacy, often exacerbated by the absence of reliable clinical biomarkers for patient stratification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!