The incidence of atherosclerosis is increased in growth hormone (GH) deficient-individuals. Nonetheless, the antiatherogenic benefits of GH replacement therapy remain uncertain. In this study the effect of human recombinant growth hormone (hrGH) replacement therapy administered to GH-deficient adults on the plasma cholesteryl ester transfer protein (CETP) concentration and activity was analyzed. These findings were related to changes in the concentrations of the plasma lipoproteins. The hrGH was administered for 12 mon to human GH-deficient patients (n = 13; 8 men, 5 women). During the study plasma lipoproteins were separated by ultracentrifugation, and plasma cholesterol esterification rate (CER), endogenous CETP activity, and CETP concentration were measured. GH replacement therapy transiently (at 3 mon) lowered plasma concentration of CETP and low density lipoprotein-cholesterol (LDL-C) and raised total triglycerides. Furthermore, hrGH permanently increased both the plasma lipoprotein(a) [Lp(a)] concentration, which is known as atherogenic, and the proportion of cholesteryl ester in the high density lipoprotein2 (HDL2) particles, which is potentially atheroprotective. The simultaneous decrease of the plasma CETP and LDL-C concentrations elicited by hrGH indicated a close relationship between LDL metabolism and the regulation of the CETP gene expression. Endogenous CETP activity and the CER were not modified because these parameters are regulated in opposite ways by plasma levels of triglycerides; that is, CER increased and CETP decreased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-001-0756-y | DOI Listing |
Int J Mol Sci
January 2025
Department of Nutrition, Faculty of Medicine, University of Chile, Santiago 8380000, Chile.
Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
January 2025
Postgraduate training base Alliance of Wenzhou Medical University, Third Affiliated Hospital of Shanghai University, Wenzhou People's Hospital, Wenzhou 325000, China. Electronic address:
Background: The causal relationship between lipid metabolites and Alzheimer's disease (AD) remains unclear and contradictory. This study aimed to systematically assess the causal relationship between lipid metabolites and AD.
Methods: A two-step bidirectional Mendelian Randomization (MR) study was employed.
Front Pharmacol
January 2025
Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China.
Background: Lipids are vital biomolecules involved in the formation of various biofilms. Seizures can cause changes in lipid metabolism in the brain. In-depth studies at multiple levels are urgently needed to elucidate lipid composition, distribution, and metabolic pathways in the brain after seizure.
View Article and Find Full Text PDFHeliyon
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
Objective: Observational studies suggest that blood lipids are a risk factor for uterine fibroids (UFs) and that lipid-lowering drugs are beneficial for the treatment and prevention of UF; however, the conclusions are inconsistent. We aimed to determine the causal effects of lipids and lipid-lowering drugs on UFs using Mendelian randomization (MR).
Methods: Genetic variants from genome-wide association studies (GWAS) of lipid traits and variants in genes encoding lipid-lowering drug targets were extracted, and two independent UF GWAS were set as the outcome.
BBA Adv
December 2024
Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
Skeletal muscle (SM) is essential for movement, stability, and overall body function, and it readily adapts to changes in energy demand. Myogenesis is energy-intensive and involves complex molecular and cellular events. We recently demonstrated that the absence of lysosomal acid lipase (LAL) significantly impacts the SM phenotype, primarily by disrupting energy homeostasis and reducing ATP production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!