Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region.

J Lipid Res

Geriatric Research, Education and Clinical Center, University of Minnesota, Minneapolis, MN 55417, USA.

Published: August 2001

There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid beta-peptide may play an important role in this interaction. Abeta destabilizes brain membranes and this action of Abeta may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Abeta1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Abeta significantly increased (P < or = 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Abeta had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P < or = 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P < or = 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Abeta by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Abeta can act as a seed for fibrillogenesis in the presence of cholesterol.

Download full-text PDF

Source

Publication Analysis

Top Keywords

spm cerebral
20
cerebral cortex
20
bulk fluidity
12
spm cerebellum
12
cortex hippocampus
12
spm
10
cholesterol
8
brain region
8
annular fluidity
8
amounts cholesterol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!