Odorant receptors (ORs) constitute the molecular basis for the detection of volatile odorous molecules and the perception of smell. Our understanding of chemical senses has been greatly expanded by the discovery of the OR gene families in vertebrates and in the nematode Caenorhabditis elegans. Recently, candidate Drosophila OR genes have been identified. The putative ORs do not possess any primary sequence identity with known vertebrate or C. elegans receptors, but belong to the family of G protein-coupled receptors according to their predicted seven transmembrane topology. To prove olfactory function of these proteins, we expressed a member of the putative Drosophila OR gene family, Or43a, in Xenopus laevis oocytes. Using two-electrode voltage-clamp recording we identified four odors (cyclohexanone, cyclohexanol, benzaldehyde, and benzyl alcohol) that activated the receptor at low micromolar concentration and structurally related substances that did not. This report shows the function and specificity of a member of the recently identified family of Drosophila ORs expressed in a heterologous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC55428 | PMC |
http://dx.doi.org/10.1073/pnas.151103998 | DOI Listing |
J Neuroinflammation
January 2025
Stark Neurosciences Research Institute, Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
Over recent years, the retina has been increasingly investigated as a potential biomarker for dementia. A number of studies have looked at the effect of Alzheimer's disease (AD) pathology on the retina and the associations of AD with visual deficits. However, while OCT-A has been explored as a biomarker of cerebral small vessel disease (cSVD), studies identifying the specific retinal changes and mechanisms associated with cSVD are lacking.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Extracellular vesicles (EVs) are taken up by most cells, however specific or preferential cell targeting remains a hurdle. This study aims to develop an EV that targets cells involved in inflammation, specifically those expressing intercellular adhesion molecule-1 (ICAM-1). To target these cells, we overexpress the ICAM-1 binding receptor "lymphocyte function-associated antigen-1" (LFA-1) in HEK293F cells, by sequential transfection of plasmids of the two LFA-1 subunits, ITGAL and ITGB2 (CD11a and CD18).
View Article and Find Full Text PDFJ Transl Med
January 2025
College of Life Science, Henan Normal University, Xinxiang, Henan, China.
Background: Regeneration plays a key role in energy recycling and homeostasis maintenance. Planarians, as ideal model animals for studying regeneration, stem cell proliferation, and apoptosis, have the strong regenerative abilities. Considerable evidence suggests that ubiquitin plays an important role in maintaining homeostasis and regulating regeneration, but the function of Ubiquitin specific proteases 7 (Usp7) on regeneration in planarians remains elusive.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, of Clinical Biochemistry, Kerman University of Medical Sciences, Jahad Boulevard Avicenna Avenue, Kerman, 7619813159, Iran.
Obesity and atherosclerosis are significant metabolic diseases characterized by disrupted lipid metabolism. MicroRNAs (miRNAs) are small, conserved, non-coding RNA sequences consisting of approximately 22 nucleotides, playing crucial roles in biological and pathological functions. Among these, miR-33a/b is particularly associated with metabolic diseases, notably obesity and atherosclerosis.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Background: Drug resistance constitutes one of the principal causes of poor prognosis in breast cancer patients. Although cancer cells can maintain viability independently of mitochondrial energy metabolism, they remain reliant on mitochondrial functions for the synthesis of new DNA strands. This dependency underscores a potential link between mitochondrial energy metabolism and drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!