The flow cytometric detection of minimal residual disease (MRD) in precursor-B-acute lymphoblastic leukemias (precursor-B-ALL) mainly relies on the identification of minor leukemic cell populations that can be discriminated from their normal counterparts on the basis of phenotypic aberrancies observed at diagnosis. This technique is not very complex, but discordancies are frequently observed between laboratories, due to the lack of standardized methodological procedures and technical conditions. To develop standardized flow cytometric techniques for MRD detection, a European BIOMED-1 Concerted Action was initiated with the participation of laboratories from six different countries. The goal of this concerted action was to define aberrant phenotypic profiles in a series of 264 consecutive de novo precursor-B-ALL cases, systematically studied with one to five triple-labelings (TdT/CD10/CD19, CD10/CD20/CD19, CD34/CD38/CD19, CD34/CD22/CD19 and CD19/CD34/CD45) using common flow cytometric protocols in all participating laboratories. The use of four or five triple-stainings allowed the identification of aberrant phenotypes in virtually all cases tested (127 out of 130, 98%). These phenotypic aberrancies could be identified in at least two and often three triple-labelings per case. When the analysis was based on two or three triple-stainings, lower incidences of aberrancies were identified (75% and 81% of cases, respectively) that could be detected in one and sometimes two triple-stainings per case. The most informative triple staining was the TdT/CD10/CD19 combination, which enabled the identification of aberrancies in 78% of cases. The frequencies of phenotypic aberrations detected with the other four triple-stainings were 64% for CD10/CD20/CD19, 56% for CD34/CD38/CD19, 46% for CD34/CD22/CD19, and 22% for CD19/CD34/CD45. In addition, cross-lineage antigen expression was detected in 45% of cases, mainly coexpression of the myeloid antigens CD13 and/or CD33 (40%). Parallel flow cytometric studies in different laboratories finally resulted in highly concordant results (>90%) for all five antibody combinations, indicating the high reproducibility of our approach. In conclusion, the technique presented here with triple-labelings forms an excellent basis for standardized flow cytometric MRD studies in multicenter international treatment protocols for precursor-B-ALL patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.leu.2402150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!