The topologies of zervamicin II and alamethicin, labeled with (15)N uniformly, selectively, or specifically, have been investigated by oriented proton-decoupled (15)N solid-state NMR spectroscopy. Whereas at lipid-to-peptide (L/P) ratios of 50 (wt/wt) zervamicin II exhibits transmembrane alignments in 1,2-dicapryl (di-C10:0-PC) and 1,2-dilauroyl (di-C12:0-PC) phosphatidylcholine bilayers, it adopts orientations predominantly parallel to the membrane surface when the lengths of the fatty acyl chains are extended. The orientational order of zervamicin II increases with higher phospholipid concentrations, and considerable line narrowing is obtained in di-C10:0-PC/zervamicin II membranes at L/P ratios of 100 (wt/wt). In contrast to zervamicin, alamethicin is transmembrane throughout most, if not all, of its length when reconstituted into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers. The (31)P solid-state NMR spectra of all phospholipid/peptaibol samples investigated show a high degree of headgroup order, indicating that the peptides do not distort the bilayer structure. The observed differences in peptide orientation between zervamicin and alamethicin are discussed with reference to differences in their lengths, helical conformations, distribution of (hydroxy)proline residues, and hydrophobic moments. Possible implications for peptaibol voltage-gating are also described.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi010162nDOI Listing

Publication Analysis

Top Keywords

zervamicin alamethicin
16
solid-state nmr
12
31p solid-state
8
orientation zervamicin
8
l/p ratios
8
zervamicin
6
15n 31p
4
nmr investigations
4
investigations orientation
4
alamethicin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!