Recent studies of Graves disease (GD) employing genome scanning techniques excluded the major histocompatibility complex as a contributor to disease liability. These findings contradict earlier population association studies. Our own earlier studies have also emphasized that genetic variation in human populations may give novel clues to disease liability and manifestations. To this end, we studied HLA class II alleles in 47 Latvian GD patients and 111 matched healthy controls. As expected, we found that DRB1*03 and DQA1*0501 (OR = 3.6, P = 0.029 and OR 2.35, P = 0.0373, respectively) were associated with GD. Unforeseen, DRB1*04 was found to be significantly increased in the patients compared to controls (OR 3.267, corrected P = 0.0319). The two DRB1 alleles conferred two non-overlapping and independent susceptibilities to GD, in that only three patients were positive for both alleles, and the removal of each allele in turn resulted in only the other DRB1 allele showing significant association with the disease. There was no heterogeneity between the two patient groups (DRB1*03 positive and DRB1*04 positive) in clinical characteristics or disease manifestations. The phenotype DRB1*03 and/or DRB1*04 was found in 34/47 patients compared to 27/111 controls yielding an OR of 7.395 (P corrected = 0.000019). We examined the structural basis of DRB1 susceptibility to GD in light of this and previous studies, showing that DRB1*03, 04, and 08 were positively associated with the disease, whereas DRB1*07 was negatively associated. Differences in protein sequences were noted at residues 54, 57, 59, and 66; positions 54, 57, and 66 are on the same face of the alpha helix. The canonical arginine 54 is replaced by glutamine in DRB1*07. At position 66, asparagine in DRB1*03 and tyrosine in DRB1*04 are replaced by phenylalanine in DRB1*07. Residue 59, likely involved in pocket formation in the antigen binding groove, is modified by replacement of tyrosine in DRB1*03, 08, and 04 and by leucine in DRB1*07. The predicted differences in the shape and charges of the proximal reaches of the antigen binding groove between DRB1*07, and 03, 04, and 08, could determine whether or not a peptide from an auto-antigen would be bound or not. Genetic variation among human populations may yield important clues to specific disease liability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.1431 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi "Link Campus University", Via del Casale di S. Pio V 44, I-00165 Rome, Italy.
, , and parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities.
View Article and Find Full Text PDFJ Clin Med
January 2025
Federal State Budgetary Scientific Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Academician LS Barbarash Boulevard, 6, Kemerovo 650002, Russia.
We aim to evaluate the dynamics of glycemic status and markers of carbohydrate metabolism 12 months after coronary artery bypass grafting (CABG) and their relationship with the one-year prognosis. The analysis of outcomes of 653 patients during 1 year after coronary artery bypass grafting is presented. In those patients who visited the study center after 1 year, markers of carbohydrate metabolism (glucose, glycated hemoglobin, fructosamine, 1.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece.
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of liver-related morbidity and mortality. Although the invasive liver biopsy remains the golden standard for MASLD diagnosis, Magnetic Resonance Imaging-derived Proton Density Fat Fraction (MRI-PDFF) is an accurate, non-invasive method for the assessment of treatment response. This study aimed at developing a Polygenic Risk Score (PRS) to improve MRI-PDFF prediction using UK Biobank data to assess an individual's genetic liability to MASLD.
View Article and Find Full Text PDFAntibiotics (Basel)
January 2025
Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
Background: Antimicrobial resistance is one of the greatest challenges of our time, urging researchers in both veterinary and public health to engage in collaborative efforts, thereby fostering the One Health approach. Infections caused by species can not only lead to significant diseases in poultry but also pose serious threats to human life, particularly in hospital (nosocomial) infections; therefore, it is crucial to identify their antimicrobial resistance.
Methods: Our objective was to assess the susceptibility profile of commensal strains ( = 227) found in commercial chicken flocks in Hungary through the determination of minimum inhibitory concentration (MIC) values.
Liver Int
February 2025
Department of Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Hannover Medical School, Hannover, Germany.
Background And Aim: Bulevirtide (BLV) leads to beneficial virologic and biochemical responses when given alone to treat hepatitis delta virus (HDV) infection, which causes the most severe form of chronic viral hepatitis. We evaluated 48 weeks of BLV monotherapy, BLV + tenofovir disoproxil fumarate (TDF) and BLV + pegylated interferon alfa-2a (Peg-IFNα-2a), with 24-week follow-up.
Methods: Ninety patients were enrolled into six arms of 15 each (A-F); 60 patients were included in the main randomisation (arms A-D), and 30 patients (arms E-F) were randomised to the extension phase: (A) Peg-IFNα-2a 180 μg once weekly (QW); (B) BLV 2 mg once daily (QD) + Peg-IFNα-2a 180 μg QW; (C) BLV 5 mg QD + Peg-IFNα-2a 180 μg QW; (D) BLV 2 mg QD; (E) BLV 10 mg QD + Peg-IFNα-2a 180 μg QW and (F) BLV 10 mg (5 mg twice daily) + TDF QD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!