A diverse range of insulin-regulated cellular processes are dependent on class I(A) phosphatidylinositol 3-kinases (PI 3-Ks) and their association with and activation by up-stream signaling molecules. Here we report on the identification of the phosphoinositide 5'-kinase PIKfyve as a partner of class I(A) PI 3-K. Thus, both p85 and p110 subunits (class I(A)) of PI 3-Ks co-precipitated with anti-PIKfyve antibodies from lysates of resting 3T3-L1 adipocytes and, vice versa, PIKfyve co-precipitated with anti-p85 PI 3-K antibodies. Assignment to class I(A) PI 3-K enzymatic activity was further substantiated by the inhibition of PtdIns 3-P production in PIKfyve immune complexes by low concentrations of wortmannin and Triton X-100, and its preferences for Mg(2+) versus Mn(2+). Insulin but not PDGF or EGF stimulation of 3T3-L1 adipocytes markedly increased the PtdIns 3-P production (4.2-fold) in PIKfyve immune complexes, primarily as a result of increased PI 3-K intrinsic enzymatic activity. Intriguingly, while both insulin and PDGF caused an increase of class I(A) PI 3-K activity co-immunoprecipitated with tyrosine phosphorylated proteins, only insulin treatment yielded an activation of class I(A) PI 3-K in PIKfyve immune complexes. Studies aiming at identifying the underlying mechanism revealed that PIKfyve-class I(A) PI 3-K association and the insulin-induced activation likely operate independently of tyrosine phosphorylated insulin receptor substrate proteins. Together, these results establish PIKfyve as a novel source of activated class I(A) PI 3-K molecules that may be relevant in the insulin-signal transduction pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0303-7207(01)00539-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!