When rats lick a bitter taste solution such as quinine-hydrochloride, they secrete profuse amounts of saliva. The salivation has a higher flow rate than that induced by other qualities of taste stimulation: sweet, salty, and sour. The present study is aimed to clarify the neural mechanism of the quinine-evoked salivation by means of behavioral, neuroanatomical, and electrophysiological experiments. Behaviorally, submandibular salivary secretion and rejection behavior (gaping) were observed in normal rats, as well as in rats chronically decerebrated at the precollicular level. In chronically decerebrate rats, these quinine-evoked reactions were strongly suppressed by destruction of the medial part of the parabrachial nucleus, including the so-called taste area, and ventral part of the parabrachial nucleus, including the pontine reticular formation. Neuroanatomical study using a retrograde tracer, Fluoro-gold, revealed that the neurons sending their axons to the superior salivatory nucleus, parasympathetic secretory center, were located mainly in the pontine reticular formation ventral to the parabrachial nucleus, not in the parabrachial taste area. Extracellular neural activity was recorded from the parabrachial region in decerebrate rats, and responsiveness to taste stimulation, jaw movements, and electrical stimulation of the superior salivatory nucleus was examined. Neurons responsive to both taste stimulation and antidromic stimulation of the superior salivatory nucleus were found in the pontine reticular formation ventral to the parabrachial nucleus, which responded well to quinine and HCl taste stimuli. Neurons in the parabrachial taste area could respond to four qualities of taste stimulation, but not to antidromic stimulation of the salivary center. These results suggest that aversive taste information from the parabrachial taste area reaches the salivary secretory center via the reticular formation ventral to the parabrachial nucleus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1566-0702(01)00234-XDOI Listing

Publication Analysis

Top Keywords

parabrachial nucleus
24
taste stimulation
20
taste area
16
ventral parabrachial
16
reticular formation
16
taste
12
pontine reticular
12
superior salivatory
12
salivatory nucleus
12
formation ventral
12

Similar Publications

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Recent studies suggest that calcitonin gene-related peptide (CGRP) neurons in the parabrachial nucleus (PBN) represent aversive information and signal a general alarm to the forebrain. If CGRP neurons serve as a true general alarm, their activation would modulate both passive nad active defensive behaviors depending on the magnitude and context of the threat. However, most prior research has focused on the role of CGRP neurons in passive freezing responses, with limited exploration of their involvement in active defensive behaviors.

View Article and Find Full Text PDF

An intra-brainstem circuitry for pain-induced inhibition of itch.

Neuroscience

January 2025

Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:

Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulates itch through the neural circuits housed in the brain and spinal cord. However, we have yet to fully understand the identities and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.

View Article and Find Full Text PDF

Identifying the Brain Circuits that Regulate Pain-Induced Sleep Disturbances.

bioRxiv

December 2024

Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215, USA.

Pain therapies that alleviate both pain and sleep disturbances may be the most effective for pain relief, as both chronic pain and sleep loss render the opioidergic system, targeted by opioids, less sensitive and effective for analgesia. Therefore, we first studied the link between sleep disturbances and the activation of nociceptors in two acute pain models. Activation of nociceptors in both acute inflammatory (AIP) and opto-pain models led to sleep loss, decreased sleep spindle density, and increased sleep fragmentation that lasted 3 to 6 hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!