Expression of insulin-like growth factor binding proteins and collagen in experimental colitis in rats.

Eur J Gastroenterol Hepatol

Division of Gastroenterology & Hepatology, Department of Medicine, University of Essen, Germany.

Published: July 2001

Objectives And Design: Crohn's disease is complicated by smooth muscle hyperplasia and stricture formation. Insulin-like growth factor (IGF)-1 and insulin-like growth factor binding proteins (IGFBPs) may be involved in stimulating intestinal smooth muscle growth and collagen synthesis. Therefore, we investigated the expression of IGFBPs, collagen and collagenase activity in rat colitis and the effects of IGF-1 on IGFBP and collagen expression in rat colonic smooth muscle cells.

Methods: Animals were sacrificed during a 4-week time course of 2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced colitis. RNA from the animals' colons was blotted and hybridized with collagen-1 and IGFBP mRNA probes. Tissue proteins were screened for IGFBPs by Western ligand blotting. Collagenase activity was measured by zymography. Rat colonic smooth muscle cells in primary culture were incubated with IGF-1 then collagen-1, and IGFBP mRNAs and proteins were measured.

Results: In the rat tissue, IGFBP-3 mRNA and protein were increased 2 h after induction of colitis. IGFBP-4 mRNA was elevated after 2 h and IGFBP-4 protein after 4 h. IGFBP-5 mRNA was upregulated after 2 h with a peak at 12 h. IGFBP-5 protein was upregulated after 1 h and reached a peak at 3 days. Collagen-1 mRNA was increased after 5 days. Collagenase levels were decreased after 1 h and returned to normal by 28 days. In rat colonic smooth muscle cells, IGF-1 increased collagen-1 and IGFBP-5 expression.

Conclusion: We demonstrated an upregulation of IGFBP and collagen expression and a downregulation of collagenase in rat colitis. In colonic smooth muscle cells, we found an upregulation of collagen-1 and IGFBP-5 following IGF-1 incubation. These results suggest an important role of IGF-1 in the collagen synthesis in colitis, mediated by IGFBPs.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00042737-200107000-00014DOI Listing

Publication Analysis

Top Keywords

smooth muscle
24
colonic smooth
16
insulin-like growth
12
growth factor
12
rat colonic
12
muscle cells
12
factor binding
8
binding proteins
8
collagen synthesis
8
collagenase activity
8

Similar Publications

Epstein-Barr virus-associated smooth muscle tumors (EBV-SMTs) represent a rare category of soft tissue tumors that are predominantly seen in individuals with compromised immune systems. Pathologically, EBV-SMT has malignant potential because of its unpredictable nature. These tumors can manifest at various anatomical sites or even multiple lesions in different locations.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!