Purification and characterization of pyranose oxidase from the white rot fungus Trametes multicolor.

Appl Environ Microbiol

Division of Biochemical Engineering, Institute of Food Technology, University of Agricultural Sciences Vienna, A-1190 Vienna, Austria.

Published: August 2001

We purified an intracellular pyranose oxidase from mycelial extracts of the white rot fungus Trametes multicolor by using ammonium sulfate fractionation, hydrophobic interaction, ion-exchange chromatography, and gel filtration. The native enzyme has a molecular mass of 270 kDa as determined by equilibrium ultracentrifugation and is composed of four identical 68-kDa subunits as determined by matrix-assisted laser desorption ionization mass spectrometry. Each subunit contains one covalently bound flavin adenine dinucleotide as its prosthetic group. The enzyme oxidizes several aldopyranoses specifically at position C-2, and its preferred electron donor substrates are D-glucose, D-xylose, and L-sorbose. During this oxidation reaction electrons are transferred to oxygen, yielding hydrogen peroxide. In addition, the enzyme catalyzes the two-electron reduction of 1,4-benzoquinone, several substituted benzoquinones, and 2,6-dichloroindophenol, as well as the one-electron reduction of the ABTS [2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid)] cation radical. As judged by the catalytic efficiencies (k(cat)/K(m)), some of these quinone electron acceptors are much better substrates for pyranose oxidase than oxygen. The optimum pH of the pyranose oxidase-catalyzed reaction depends strongly on the electron acceptor employed and varies from 4 to 8. It has been proposed that the main metabolic function of pyranose oxidase is as a constituent of the ligninolytic system of white rot fungi that provides peroxidases with H(2)O(2). An additional function could be reduction of quinones, key intermediates that are formed during mineralization of lignin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93065PMC
http://dx.doi.org/10.1128/AEM.67.8.3636-3644.2001DOI Listing

Publication Analysis

Top Keywords

pyranose oxidase
16
white rot
12
rot fungus
8
fungus trametes
8
trametes multicolor
8
pyranose
5
purification characterization
4
characterization pyranose
4
oxidase
4
oxidase white
4

Similar Publications

Pyranose oxidase (POx) is an FAD-dependent oxidoreductase and belongs to the glucose-methanol-choline (GMC) superfamily of oxidoreductases. As recently reported, POxs and FAD-dependent -glycoside oxidases (CGOxs) share the same sequence space, and phylogenetic analysis of actinobacterial sequences belonging to this shared sequence space showed that it can be divided into four clades. Here, we report the biochemical characterization of a POx/CGOx from sp.

View Article and Find Full Text PDF

Oxygen scavenging systems (OSSs) are critical for dye stability in single-molecule fluorescence (SMF) experiments. However, the commonly used protocatechuic acid (PCA)/protocatechuate-3,4-dioxygenase (PCD) OSS alters DNA mechanical properties, limiting its applicability. To address this limitation, we examine the bilirubin oxidase (BOD) OSS, which had not been previously used in single-molecule experiments, alongside the pyranose oxidase and catalase (POC) OSS.

View Article and Find Full Text PDF

Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail.

View Article and Find Full Text PDF

To explore the relationship between serum 1, 5-dehydratoglucitol (1, 5-AG) level and insulin resistance, microvascular complications in patients with type 2 diabetes mellitus (T2DM). The clinical data of 836 patients with T2DM admitted to the Changsha Central Hospital Affiliated to University of South China from May to December 2023 were retrospectively and cross-sectionally analyzed. Serum 1, 5-AG levels were detected by pyranose oxidase method.

View Article and Find Full Text PDF

FAD-dependent pyranose oxidase (POx) and -glycoside-3-oxidase (CGOx) are both members of the glucose-methanol-choline superfamily of oxidoreductases and belong to the same sequence space. Pyranose oxidases had been studied for their oxidation of monosaccharides such as D-glucose, but recently, a bacterial -glycoside-3-oxidase that is phylogenetically related to POx and that reacts with -glycosides such as carminic acid, mangiferin or puerarin has been described. Since these actinobacterial CGOx enzymes belong to the same sequence space as bacterial POx, they must have evolved from the same ancestor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!