The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a(0)(A)) of 0.32 liter. mg (dry weight)(-1). h(-1) followed by a second one at higher concentrations with an a(o)(A) of 0.77 liter. mg (dry weight)(-1). h(-1). This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol. min(-1). mg (dry weight)(-1) was measured, irrespective of the cell concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC93049PMC
http://dx.doi.org/10.1128/AEM.67.8.3496-3500.2001DOI Listing

Publication Analysis

Top Keywords

124-tcb concentrations
16
nano- micromolar
12
initial 124-tcb
12
dry weight-1
12
concentrations
9
transformation 124-trichlorobenzene
8
micromolar concentrations
8
burkholderia strain
8
strain ps14
8
initial concentrations
8

Similar Publications

A common strategy for removing highly toxic organic compounds, such as chlorinated organic compounds, is their adsorption on granular activated carbon. Spent granular activated carbon results in a toxic residue to manage; therefore, the regeneration and reuse of granular activated carbon on the site would be advisable. This work studies the regeneration of a granular activated carbon saturated in 1,2,4-trichlorobenzene, chosen as the model chlorinated organic compounds, by heterogeneous Fenton, where iron was previously immobilised on the granular activated carbon surface.

View Article and Find Full Text PDF

Vis LED Photo-Fenton Degradation of 124-Trichlorobenzene at a Neutral pH Using Ferrioxalate as Catalyst.

Int J Environ Res Public Health

August 2022

Chemical Engineering and Materials Department, Chemical Sciences Faculty, Complutense University of Madrid, 28040 Madrid, Spain.

Chlorinated organic compounds (COCs) are among the more toxic organic compounds frequently found in soil and groundwater. Among these, toxic and low-degradable chlorobenzenes are commonly found in the environment. In this work, an innovative process using hydrogen peroxide as the oxidant, ferrioxalate as the catalyst and a visible light-emitting diode lamp (Vis LED) were applied to successfully oxidize 124-trichlorobenzene (124-TCB) in a saturated aqueous solution of 124-TCB (28 mg L) at a neutral pH.

View Article and Find Full Text PDF

Limitations and opportunities of transcutaneous bilirubin measurements.

Pediatrics

April 2012

Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.

Objective: Although transcutaneous bilirubinometers have existed for over 30 years, the clinical utility of the technique is limited to a screening method for hyperbilirubinemia, rather than a replacement for invasive blood sampling. In this study, we investigate the reason for this limited clinical value and address possibilities for improvement.

Methods: To obtain better insight into the physiology of bilirubin measurements, we evaluated a transcutaneous bilirubinometer that determines not only the cutaneous bilirubin concentration (TcB) but also the blood volume fraction (BVF) in the investigated skin volume.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!