Adrenomedullin is a regulated modulator of neonatal cardiomyocyte hypertrophy in vitro.

Cardiovasc Res

Molecular Physiology Laboratory, Baker Medical Research Institute, P.O. Box 6492 St. Kilda Rd. Central, VIC 8008, Melbourne, Australia.

Published: August 2001

Objective: Adrenomedullin is a potent hypotensive, natriuretic and diuretic peptide that is coexpressed in the heart with its receptor, suggesting that it may have localized actions as a modulator of cardiac function. Although expression of adrenomedullin is upregulated in the pathological heart, its cardiac function has not been clearly elucidated and it is not known whether this represents a common feature of cardiac hypertrophy, nor whether this is restricted to cardiac myocytes. We have determined the direct effects of hypertrophic agents on cardiomyocyte adrenomedullin gene expression and peptide secretion and have examined the effects of adrenomedullin on biochemical markers of cardiomyocyte hypertrophy.

Methods: Regulation of adrenomedullin expression and its effects on the hypertrophic response were studied in cultured rat neonatal ventricular cardiomyocytes.

Results: Incubation with phenylephrine or endothelin for 48 h led to a hypertrophic response with an associated fivefold stimulation of ANP gene expression. In contrast, adrenomedullin mRNA was inhibited by 30-50% in response to phenylephrine or endothelin-mediated hypertrophy, and this was associated with a 35-45% reduction in secretion of immunoreactive adrenomedullin. Phorbol ester mediated activation of protein kinase C and increasing intracellular Ca(2+) with ionomycin led to significant downregulation of adrenomedullin gene expression in cardiomyocytes. Co-incubation with 100 nM adrenomedullin for 48 h inhibited phenylephrine-induced cardiomyocyte hypertrophy as determined by protein:DNA ratio. Adrenomedullin partially blocked phenylephrine-mediated transcriptional activation of ANP and MLC-2 reporter gene expression in cardiomyocytes and this effect was mimicked by 2 microM forskolin, suggesting that this response was mediated via the activation of adenylate cyclase.

Conclusion: These data demonstrate that the cardiomyocyte adrenomedullin gene is repressed by phenylephrine or endothelin-mediated hypertrophy. The inhibitory effects of adrenomedullin on the cardiomyocyte hypertrophic response suggests that this peptide acts as a regulated autocrine or paracrine modulator of cardiomyocyte function and that downregulation of adrenomedullin expression may play a role in induction and maintenance of cardiomyocyte hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0008-6363(01)00318-2DOI Listing

Publication Analysis

Top Keywords

gene expression
16
adrenomedullin
14
cardiomyocyte hypertrophy
12
adrenomedullin gene
12
hypertrophic response
12
cardiomyocyte
8
cardiac function
8
effects hypertrophic
8
cardiomyocyte adrenomedullin
8
effects adrenomedullin
8

Similar Publications

Although nucleoporin 98 (NUP98) fusion oncogenes often drive aggressive pediatric leukemia by altering chromatin structure and expression of HOX genes, underlying mechanisms remain elusive. Here, we report that a Hoxb-associated lncRNA HoxBlinc was aberrantly activated in NUP98-PHF23 fusion-driven leukemias. HoxBlinc chromatin occupancies led to elevated MLL1 recruitment and aberrant homeotic topologically associated domains (TADs) that enhanced chromatin accessibilities and activated homeotic/hematopoietic oncogenes.

View Article and Find Full Text PDF

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Primary membranous nephropathy (PMN) is a prevalent renal disorder characterized by immune-mediated damage to the glomerular basement membrane, with recent studies highlighting the significant role of pyroptosis in its progression. In this study, we investigate the molecular mechanisms underlying PMN, focusing on the role of Tumor necrosis factor receptor-associated factor 6 (TRAF6) in promoting disease advancement. Specifically, we examine how TRAF6 facilitates PMN progression by inducing the ubiquitination of Transforming growth factor-beta-activated kinase 1 (TAK1), which in turn activates the Gasdermin D (GSDMD)/Caspase-1 axis, leading to podocyte pyroptosis.

View Article and Find Full Text PDF

In this study, spatial and single-cell transcriptome techniques were used to investigate the role of beta-galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1) in promoting peritoneal metastasis in ovarian cancer epithelial cells. We collected single-cell transcriptomic (GSE130000) and spatial transcriptomic datasets (GSE211956) from the Gene Expression Omnibus and RNA-sequencing data from The Cancer Genome Atlas. The Robust Cell Type Decomposition (RCTD) approach was implemented to integrate spatial and single-cell transcriptomic data.

View Article and Find Full Text PDF

Adenine base editor corrected ADPKD point mutations in hiPSCs and kidney organoids.

Adv Biotechnol (Singap)

June 2024

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.

Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!