Effects of ischemia on gene expression.

J Surg Res

Department of Surgery and Biostatistics, H. Lee Moffitt Cancer Center, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33647, USA.

Published: August 2001

Microarray gene expression technology has recently made it feasible to characterize the RNA expression of thousands of genes across numerous tissue samples. We hypothesized that the warm ischemia commonly associated with the surgical extirpation of human tissue would have significant effects on gene expression profiles. To quantitate the effects of warm ischemia on human tissue, we rapidly dissected normal mucosa from a human colon cancer specimen. The specimen was divided and maintained at room temperature until snap-frozen in liquid nitrogen. Aliquots of tissue were frozen at times 5, 10, 15, 20, 40, and 60 min after extirpation. Spotted microarrays composed of 2400 distinct elements were used to assay mRNA derived from each time point in triplicate. Eisen's hierarchical clustering methodology and Bayesean statistical methods were then used to assay the effects of warm ischemia on gene expression. Application of time-course statistical models suggest that three patterns were induced by ischemia, accounting for 68.2, 17.8, and 13.4% of the evaluable genes, respectively. Pattern I corresponds to an average change of 27% over 60 min from 5 min baseline level of expression and 63.8% of the genes with at least 80% probability of membership in this pattern show average increases in expression over 60 min. The remainder decrease on average. Pattern II genes show the least ischemia-related effects, demonstrating an average change of only 12% over 60 min. In contrast to pattern I, we find that 67.5% of the genes with at least 80% probability of membership in this pattern are decreasing in expression on average over time. The remaining 32.5% in this pattern increase an average of 12% over 60 min. Finally, pattern III genes (13.4% of the sample) show the greatest sensitivity to ischemia, changing an average of 50% over 60 min, with about the same number increasing as are decreasing. Fold changes in RNA over- or under-expression were observed up to greater than 20-fold. Warm ischemia associated with the surgical extirpation of human tissues has significant effects on gene expression. These data support the careful monitoring of ischemic time for tissues harvested for the purpose of gene profiling.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jsre.2001.6195DOI Listing

Publication Analysis

Top Keywords

gene expression
20
warm ischemia
16
expression
9
ischemia gene
8
associated surgical
8
surgical extirpation
8
extirpation human
8
human tissue
8
effects gene
8
effects warm
8

Similar Publications

Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC), the most common form of liver cancer, has a significant mortality rate, largely due to late diagnosis. Recent advances in medical research have demonstrated the potential of biomarkers for early detection. Moreover, the discovery and use of prognostic biomarkers offer a ray of hope in the fight against liver cancer.

View Article and Find Full Text PDF

Background: Acute Lymphoblastic Leukemia (ALL) is the most common type of leukemia among children. There are several types of drugs that are common in treating and controlling leukemia, including 6-M. Moreover, the anti-cancer effects of the Thiosemicarbazone-Ni complex were surveyed as well as 6-MP.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!