Gene transfer into hematopoietic stem cells (HSCs) is an ideal treatment strategy for many genetic and hematologic diseases. However, progress has been limited by the low HSC transduction rates obtained with retroviral vectors based on murine leukemia viruses. This study examined the potential of vectors derived from the nonpathogenic human foamy virus (HFV) to transduce human CD34(+) cells and murine HSCs. More than 80% of human hematopoietic progenitors present in CD34(+) cell preparations derived from cord blood were transduced by a single overnight exposure to HFV vector stocks. Mice that received transduced bone marrow cells expressed the vector-encoded transgene long term in all major hematopoietic cell lineages and in over 50% of cells in some animals. Secondary bone marrow transplants and integration site analysis confirmed that gene transfer occurred at the stem cell level. Transgene silencing was not observed. Thus vectors based on foamy viruses represent a promising approach for HSC gene therapy. (Blood. 2001;98:604-609)

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood.v98.3.604DOI Listing

Publication Analysis

Top Keywords

gene transfer
12
hematopoietic stem
8
stem cells
8
foamy virus
8
vectors based
8
bone marrow
8
cells
5
gene
4
transfer murine
4
hematopoietic
4

Similar Publications

Pregnancy and Nursing Management for Embryo-Transferred and Genetically Modified Rabbits.

J Vis Exp

December 2024

Guangdong Medical Laboratory Animal Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University;

With the advancement of scientific research, the demand for gene-edited rabbit models is increasing. However, there are limited pregnancy and feeding management systems for gene-edited rabbits, leading to low survival rates among gene-edited rabbits prepared by many inexperienced researchers. Therefore, proper guidance is essential.

View Article and Find Full Text PDF

SARS-CoV-2 infection is accompanied by elevated liver enzymes, and patients with pre-existing liver conditions experience more severe disease. While it was known that SARS-CoV-2 infects human hepatocytes, our study determines the mechanism of infection, demonstrates viral replication and spread, and highlights direct hepatocyte damage. Viral replication was readily detectable upon infection of primary human hepatocytes and hepatoma cells with the ancestral SARS-CoV-2, Delta, and Omicron variants.

View Article and Find Full Text PDF

Background: The emergence of , which can confer resistance to phenicols and oxazolidinones in spp., poses a growing public health threat.

Methods: 102 -positive enterococci (OPEs) including various species were isolated from feces of 719 healthy volunteers in a Shenzhen community, China.

View Article and Find Full Text PDF

The emerging field of precision medicine relies on scientific breakthroughs to understand disease mechanisms and develop cutting-edge technologies to overcome underlying genetic and functional aberrations. The establishment of the Centre of Excellence for the Technologies of Gene and Cell Therapy (CTGCT) at the National Institute of Chemistry (NIC) in Ljubljana represents a significant step forward, as it is the first centre of its kind in Slovenia. The CTGCT is poised to spearhead advances in cancer immunotherapy and personalised therapies for neurological and other rare genetic diseases.

View Article and Find Full Text PDF

The archaeal class is widely and abundantly distributed in anoxic habitats. Metagenomic studies have suggested that they are mixotrophic, capable of CO fixation and heterotrophic growth, and involved in acetogenesis and lignin degradation. We analyzed 35 metagenome-assembled genomes (MAGs), including the first complete circularized MAG (cMAG) of the Bathy-6 subgroup, from the metagenomes of three full-scale pulp and paper mill anaerobic digesters and three laboratory methanogenic enrichment cultures maintained on pre-treated poplar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!