Fetuin/alpha2-HS glycoprotein (alpha2-HSG) homologs have been identified in several species including rat, sheep, pig, rabbit, guinea pig, cattle, mouse and human. Multiple physiological roles for these homologs have been suggested, including ability to bind to hydroxyapatite crystals and to specifically inhibit the tyrosine kinase (TK) activity of the insulin receptor (IR). In this study we report the identification, cloning, and characterization of the mouse Ahsg gene and its function as an IR-TK inhibitor. Genomic clones derived from a mouse Svj 129 genomic library were sequenced in order to characterize the intron-exon organization of the mouse Ahsg gene, including an 875 bp subclone containing 154 bp upstream from the transcription start site, the first exon, and part of the first intron. A second genomic subclone harboring a 3.45 kb Bgl II fragment contained exons 2, 3 and 4 in addition to two adjacent elements within the first intron-a repetitive element of the B1 family (92 bp) and a 271 bp tract of (T,C)n*(A,G)n. We have mapped mouse Ahsg at 16 cM adjacent to the Diacylglycerol kinase 3 (Dagk3) gene on chromosome 16 by genotyping interspecific backcross panels between C57BL/6J and Mus spretus. The position is syntenic with human chromosome 3q27, where the human AHSG gene resides. Using recombinant mouse alpha2-HSG expressed from a recombinant baculovirus, we demonstrate that mouse alpha2-HSG inhibits insulin-stimulated IR autophosphorylation and IR-TKA in vitro. In addition, mouse alpha2-HSG (25 microg/ml) completely abolishes insulin-induced DNA synthesis in H-35 rat hepatoma cells. Based on the sequence data and functional analysis, we conclude that the mouse Ahsg gene is the true ortholog of the human AHSG gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2477743PMC
http://dx.doi.org/10.1155/edr.2000.249DOI Listing

Publication Analysis

Top Keywords

ahsg gene
20
mouse ahsg
16
mouse alpha2-hsg
12
mouse
10
insulin receptor
8
tyrosine kinase
8
ortholog human
8
human ahsg
8
ahsg
6
gene
6

Similar Publications

Identification of Key Genes and Pathways in Lenvatinib-resistant Hepatocellular Carcinoma using Bioinformatic Analysis and Experimental Validation.

Curr Med Chem

January 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.

Background: Resistance to lenvatinib poses a serious threat to the therapy of patients with Hepatocellular Carcinoma (HCC). The mechanism by which HCC develops resistance to lenvatinib is currently unknown.

Objective: The aim of this study was to identify key genes and pathways involved in lenvatinib resistance in HCC using bioinformatic analysis and experimental validation.

View Article and Find Full Text PDF

Background: Identifying markers or genes crucial for growth traits in Zhongwei goats is pivotal for breeding. Pinpointing genetic factors linked to body size gain enhances breeding efficiency and economic value. In this study, we used the MGISEQ-T7 platform to re-sequence 240 Zhongwei goats (133 male; 107 female) belonging to 5 metrics of growth traits at different growth stages (40 days and 6 months, here in after referred to as 40d and 6 m), namely, Body Weight (BW), Body Height (BH), Body Length (BL), Chest Circumference (CC), Tube Circumference (TC) were examined.

View Article and Find Full Text PDF

We aimed to explore the role of Amino acid metabolism (AAM) and identify biomarkers for prognosis management and treatment of lung adenocarcinoma. Differentially expressed genes (DEGs) associated with AAM in lung adenocarcinoma were selected from public databases. Samples were clustered into varying subtypes using ConsensusClusterPlus based on gene levels.

View Article and Find Full Text PDF

Background: Astragalus membranaceus has shown positive clinical efficacy in treating colorectal cancer (CRC).

Objective: This study aimed to identify the key active components of Astragalus and determine effective targets of these components in CRC patients.

Methods: We identified active components of Astragalus membranaceus and differentially expressed genes in traditional Chinese medicine systems pharmacology database and The Cancer Genome Atlas.

View Article and Find Full Text PDF

One of the sensitive markers for autoimmune thyroid disease (AITD) clinical identification is thyroid-stimulating hormone receptor antibodies (TRAbs). To quickly distinguish TRAb with distinct antigenic epitopes, a straightforward and uncomplicated technique has not yet been created. The objective of this study is to search for molecular diagnostic targets for different types of AITD {Graves' disease (GD), Graves' orbitopathy (GO), GD with third-degree goiter [GD(3)], hypothyroidism combined with positive TRAb [HT(TRAb+)]} as molecular diagnostic targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!