Cortico-basal ganglia circuits are organized in parallel channels. Information flow from functionally distinct cortical areas remains segregated within the striatum and through its direct projections to basal ganglia output structures. Whether such a segregation is maintained in trans-subthalamic circuits is still questioned. The effects of electrical stimulation of prefrontal, motor, and auditory cortex were analyzed in the subthalamic nucleus as well as in the striatum of anesthetized rats. In the striatum, cells (n = 300) presenting an excitatory response to stimulation of these cortical areas were located in distinct striatal territories, and none of the cells responded to two cortical stimulation sites. In the subthalamic nucleus, both prefrontal and motor cortex stimulations induced early and late excitatory responses as a result of activation of the direct cortico-subthalamic pathway and of the indirect cortico-striato-pallido-subthalamic pathway, respectively. Stimulation of the auditory cortex, which does not send direct projection to the subthalamic nucleus, induced only late excitatory responses. Among the subthalamic responding cells (n = 441), a few received both prefrontal and motor cortex (n = 19) or prefrontal and auditory cortex (n = 10) excitatory inputs, whereas a larger number of cells were activated from both motor and auditory cortices (n = 48). The data indicate that the segregation of cortical information flow originating from prefrontal, motor, and auditory cortices that occurred in the striatum is only partly maintained in the subthalamic nucleus. It can be proposed that the existence of specific patterns of convergence of information flow from these functionally distinct cortical areas in the subthalamic nucleus allows interactions between parallel channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6762642 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.21-15-05764.2001 | DOI Listing |
Clin Neurophysiol
January 2025
Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil; Brazilian Institute of Neuroscience and Neurotechnology, Campinas, São Paulo, Brazil. Electronic address:
Introduction: Freezing of gait (FOG) is a disabling symptom that affects over half of Parkinson's disease patients (PD) and hinders the ability to walk. Subthalamic nucleus (STN) deep brain stimulation (DBS) effectiveness in ameliorating the FOG remains controversial, lacking a reliable electrophysiological biomarker from local field potentials (LFP).
Methods: The LFP-STN rhythms bandpower and dynamics were characterized at rest across groups in a cohort of 23 patients (14 with FOG, and 9 without, n-FOG).
Oper Neurosurg (Hagerstown)
November 2024
Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, USA.
Background And Objectives: A typical workflow for deep brain stimulation (DBS) surgery consists of head frame placement, followed by stereotactic computed tomography (CT) or MRI before surgical implantation of the hardware. At some institutions, this workflow is prolonged when the imaging scanner is located far away from the operating room, thereby increasing workflow times by the addition of transport times. Recently, the intraoperative O-arm has been shown to provide accurate image fusion with preoperative CT or MR imaging, suggesting the possibility of obtaining an intraoperative localization scan and postoperative confirmation.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFStereotact Funct Neurosurg
January 2025
Introduction: In 2015, directional leads have been released in Europe for deep brain stimulation (DBS) and have been particularly used for subthalamic nucleus (STN) DBS for Parkinson's disease (PD). In this study we aimed to compare an omnidirectional and directional leads cohort of PD patients when it comes to clinical effectiveness and to assess the correlation with volume of tissue activated - target overlap (VTA-target).
Methods: A total of 60 consecutive patients were retrospectively included.
J Neurosurg
January 2025
1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing.
Objective: The aim of this study was to evaluate outcomes of deep brain stimulation (DBS) for Meige syndrome, compare the efficacy of globus pallidus internus (GPi) and subthalamic nucleus (STN) as targets, and identify potential outcome predictors.
Methods: The PubMed, Embase, and Web of Science databases were systematically searched to collect individual data from patients with Meige syndrome receiving DBS. Outcomes were assessed using the Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) scores.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!