Stimulation of HIRcB fibroblasts with insulin leads to accumulation of active components of the mitogen-activated protein kinase cascade in endocytic compartments. However, the factors that regulate the mobilization of these components through the endocytic pathway and the relevance of this event to cellular signaling remain unclear. Here we report that Ras proteins are associated with lipid rafts in resting HIRcB fibroblasts. Ras is rapidly internalized into the endocytic compartment following stimulation with insulin. The redistribution of Ras is independent of its activation. Attachment of the C-terminal 20 amino acids of Ha-Ras to green fluorescent protein was sufficient to target this construct to the same loci as the endogenous Ras protein, indicating that Ras distribution is a consequence of the association of its lipid modified C terminus with membranes. Depletion of plasma membrane cholesterol delocalized Ras and blocked insulin-dependent Ras traffic. Cholesterol depletion also blocked insulin-dependent phosphorylation of MEK and mitogen-activated protein kinase (MAPK) but had no effects on the translocation and activation of Raf-1. A second inhibitor of endocytosis, cytochalasin D, also blocked insulin-dependent MAPK phosphorylation. Taken together, these results suggest that mobilization of active Raf-1 through the endocytic compartment is required for completion of the MAPK cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M105918200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!