Developmental potential of mouse embryos reconstructed from metaphase embryonic stem cell nuclei.

Biol Reprod

Unité de Biologie du Développement et Biotechnologie, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France.

Published: August 2001

Mice have recently been successfully cloned from embryonic stem (ES) cells. However, these fast dividing cells provide a heterogeneous population of donor nuclei, in terms of cell cycle stage. Here we used metaphases as a source of donor nuclei because they offer the advantage of being both unambiguously recognizable and synchronous with the recipient metaphase II oocyte. We showed that metaphases from ES cells can provide a significantly higher development rate to the morula or blastocyst stage (56--70%) than interphasic nuclei (up to 28%) following injection into a recipient oocyte. Selective detachment of mitotic cells after a demecolcin treatment greatly facilitates and accelerates the reconstruction of embryos by providing a nearly pure population of cells in metaphase and did not markedly affect the developmental rate. Most of the blastocysts obtained by this procedure were normal in terms of both morphology and ratio of inner cell mass and total cell number. After transfer into pseudopregnant recipients at the one- or two-cell stage, the ability of metaphase to be fully reprogrammed was demonstrated by the birth of two pups (1.5% of activated oocytes). Although the implantation rate was quite high (up to 32.9% of activated oocytes), the postimplantation development was characterized by a high and rapid mortality. Our data provide a clear situation to explore the long-lasting effects that can be induced by early reprogramming events.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolreprod/65.2.412DOI Listing

Publication Analysis

Top Keywords

embryonic stem
8
cells provide
8
donor nuclei
8
activated oocytes
8
cells
5
developmental potential
4
potential mouse
4
mouse embryos
4
embryos reconstructed
4
metaphase
4

Similar Publications

Screening of Retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling.

Exp Eye Res

January 2025

Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China. Electronic address:

Due to its unique physiological structure and functions, the eye has received considerable attention in the field of Adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.

View Article and Find Full Text PDF

Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish.

N Biotechnol

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:

Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.

View Article and Find Full Text PDF

True cancer stem cells exhibit relative degrees of dormancy and genomic stability.

Neoplasia

January 2025

Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.

Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Mesenchymal Traits as an Intrinsic Feature of Undifferentiated Cells.

J Dev Biol

December 2024

Department of Neuroscience, Biomedicine and Movement-Sec. Anatomy and Histology, University of Verona, Via Le Grazie 8, 37134 Verona, Italy.

Since its first conceptualization over a century ago, the mesenchymal phenotype has traditionally been viewed as either a transient phase between successive epithelial stages or as a feature of cell types primarily devoted to structural support. However, recent findings in cancer research challenge this limited view, demonstrating that mesenchymal traits and hybrid mesenchymal/epithelial states can mark cancer cells with stem cell properties. By analyzing publicly available single-cell transcriptome datasets from early embryonic stages and adult tissues, this study aims to extend this concept beyond pathological contexts, suggesting that a partial or fully mesenchymal phenotype may represent the morphological expression of undifferentiated and multipotent states in both the developing embryo and adult organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!