A series of experiments was conducted to test the hypothesis that an improved cryopreservation protocol for pronuclear stage mouse embryos will produce transgenic (Tg) mice by pronuclear gene injection at a rate not significantly different from noncryopreserved embryos. In the first experiment, three cryoprotective agents (CPAs) (dimethyl sulfoxide [DMSO], propylene glycol [PG], ethylene glycol [EG]) and two cryopreservation protocols, currently used for pronuclear embryos, were compared in regard to their ability to maintain post-thaw morphological integrity and in vitro developmental competence. In the second and third experiments, the optimal cryopreservation protocol determined from the first experiment was used to evaluate in vitro developmental competence of pronuclear embryos following green fluorescence protein gene injection and in vivo developmental competence as well as the gene integration rates. Survival (morphological integrity and development to two cells) of embryos cryopreserved in the presence of DMSO was higher (P < 0.05) than those cryopreserved with either PG or EG. Postinjection developmental competence (development to two cells) of cryopreserved CBA, C57B6/JxCBA-F1 and noncryopreserved (control) embryos was not different (P > 0.05). Postinjection blastocyst formation rate of cryopreserved and noncryopreserved C57B6/JxCBA-F1 embryos was similar (P > 0.05); however, noncryopreserved CBA embryos resulted in a higher blastocyst formation than controls (P < 0.05). While there was no difference in the percentage of transgenic fetuses between cryopreserved and control CBA embryos (P > 0.05), cryopreserved C57B6/JxCBA-F1 embryos resulted in lower transgenic fetuses than control (P < 0.05). These results indicate that the use of cryopreserved mouse pronuclear embryos can be a useful and efficient approach to the production of Tg mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1095/biolreprod65.2.407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!