The conformational properties and geometric structures of trifluoromethyl fluoroformate, CF(3)OC(O)F (1), and perfluorodimethyl carbonate, (CF(3)O)(2)CO (2), have been studied by matrix IR spectroscopy, gas electron diffraction (GED), and quantum chemical calculations (MP2 and B3LYP with 6-311G basis sets). In both compounds the synperiplanar orientation of the O-CF(3) groups relative to the C=O double bond is preferred. If heated Ar/1 and Ar/2 mixtures are deposited as a matrix at 14 K, new bands appear in the matrix IR spectra which are assigned to the anti form of 1 and to the syn/anti form of 2. At room temperature the contribution of the anti rotamer of 1 is 4% (DeltaH degrees = H degrees (anti) - H degrees (syn) = 1.97(5) kcal/mol), and the contribution of the syn/anti conformer of 2 is estimated to be less than 1%. These high-energy conformers are not observed in the GED experiment. The quantum chemical calculations reproduce the structural and conformational properties of both compounds satisfactorily.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic010066aDOI Listing

Publication Analysis

Top Keywords

trifluoromethyl fluoroformate
8
perfluorodimethyl carbonate
8
conformational properties
8
quantum chemical
8
chemical calculations
8
structures conformations
4
conformations trifluoromethyl
4
fluoroformate perfluorodimethyl
4
carbonate conformational
4
properties geometric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!