FRET-based detection of different conformations of MK2.

EMBO Rep

Innovationskolleg Zellspezialisierung, Martin-Luther-Universität Halle Wittenberg, 06120 Halle, Germany.

Published: August 2001

MAP kinase-activated protein kinase 2 (MK2 or MAPKAP K2) is a stress-activated enzyme downstream to p38 MAPK. By fusion of green fluorescent protein variants to the N- and C-terminus we analysed conformational changes in the kinase molecule in vitro and in vivo. Activation of MK2 is accompanied by a decrease in fluorescence resonance energy transfer, indicating a transition from an inactive/closed to an active/open conformation with an increase in the apparent distance between the fluorophores of approximately 9 A. The closed conformation exists exclusively in the nucleus. Upon stress, the open conformation of MK2 rapidly becomes detectable in the cytoplasm and accumulates in the nucleus only when Crm1-dependent nuclear export is blocked. Hence, in living cells activation of MK2 and its nuclear export are coupled by a phosphorylation-dependent conformational switch.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1083994PMC
http://dx.doi.org/10.1093/embo-reports/kve157DOI Listing

Publication Analysis

Top Keywords

activation mk2
8
nuclear export
8
mk2
5
fret-based detection
4
detection conformations
4
conformations mk2
4
mk2 map
4
map kinase-activated
4
kinase-activated protein
4
protein kinase
4

Similar Publications

Antiproliferative effect of hydroalcoholic brown propolis extract on tumor and non-tumor cells.

Braz J Biol

January 2025

Universidade Tecnológica Federal do Paraná - UTFPR, Departmeno de Química e Ciências Biológicas, Francisco Beltrão, PR, Brasil.

Studies show that propolis has antimicrobial, antifungal, antiviral, anti-inflammatory, antioxidant, antitumor, and immunomodulatory properties, and may protect against diseases such as diabetes, cardiovascular disease, and cancer. We aimed to extract compounds of brown propolis with hydroalcoholic solvents and evaluate their cytotoxic activity on tumor and non-tumor cells by MTT test. We tested the solute:solvent ratio (ethanol:water) and extraction time in a Shaker incubator (710 rpm) before conducting a central composite rotational design (CCRD) to optimize time and solvent mixture.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

The p38α-MK2 signaling axis plays an important role in the inflammatory response of cells. Here, we carried out a series of optimizations on CDD-450, aiming to enhance inhibition of the p38α-MK2 complex and improve pharmacokinetic properties. First, the magic F strategy was utilized to obtain compound , which displayed a 60-fold increase in tumor necrosis factor α inhibition and a 600-fold increase in interleukin-6 inhibition.

View Article and Find Full Text PDF

Background: Bladder cancer patients unable to receive cystectomy or who choose to pursue organ-sparing approach are managed with definitive (chemo)radiotherapy. However, this standard of care has not evolved in decades and disease recurrence and survival outcomes remain poor. Identifying novel therapies to combine with radiotherapy (RT) is therefore paramount to improve overall patient outcomes and survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!