The human multidrug-resistance (MDR1) P-glycoprotein (Pgp) is an ATP-binding-cassette transporter (ABCB1) that is ubiquitously expressed. Often its concentration is high in the plasma membrane of cancer cells, where it causes multidrug resistance by pumping lipophilic drugs out of the cell. In addition, MDR1 Pgp can transport analogues of membrane lipids with shortened acyl chains across the plasma membrane. We studied a role for MDR1 Pgp in transport to the cell surface of the signal-transduction molecule platelet-activating factor (PAF). PAF is the natural short-chain phospholipid 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine. [(14)C]PAF synthesized intracellularly from exogenous alkylacetylglycerol and [(14)C]choline became accessible to albumin in the extracellular medium of pig kidney epithelial LLC-PK1 cells in the absence of vesicular transport. Its translocation across the apical membrane was greatly stimulated by the expression of MDR1 Pgp, and inhibited by the MDR1 inhibitors PSC833 and cyclosporin A. Basolateral translocation was not stimulated by expression of the basolateral drug transporter MRP1 (ABCC1). It was insensitive to the MRP1 inhibitor indomethacin and to depletion of GSH which is required for MRP1 activity. While efficient transport of PAF across the apical plasma membrane may be physiologically relevant in MDR1-expressing epithelia, PAF secretion in multidrug-resistant tumours may stimulate angiogenesis and thereby tumour growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222017 | PMC |
http://dx.doi.org/10.1042/0264-6021:3570859 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Comenius University Bratislava, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Bratislava, Slovakia.
Cholinesterase (ChE) inhibitors are under consideration to be used in the treatment of cardiovascular pathologies. A prerequisite to advancing ChE inhibitors into the clinic is their thorough characterization in the heart. The aim here was to provide a detailed analysis of cardiac ChE to understand their molecular composition, localization, and physiological functions.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.
View Article and Find Full Text PDFImmunol Res
January 2025
, Auckland, New Zealand.
Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Plant Pathology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.
Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!