Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes.

J Biol Chem

Department of Basic Medical Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA.

Published: September 2001

The hepatitis B virus (HBV) X protein (pX) is implicated in hepatocarcinogenesis of chronic HBV patients by an unknown mechanism. Activities of pX likely relevant to hepatocyte transformation include activation of the mitogenic RAS-RAF-MAPK and JNK pathways. To assess the importance of mitogenic pathway activation by pX in transformation, we employed a cellular model system composed of two tetracycline-regulated, pX-expressing cell lines, constructed in AML12-immortalized hepatocytes. This system includes the differentiated 3pX-1 and the de-differentiated 4pX-1 hepatocytes. Our studies have demonstrated that conditional pX expression transforms only 3pX-1 cells. Here, comparative in vitro kinase assays and various in vivo analyses demonstrate that pX affects an inverse activation of RAS-RAF-MAPK and JNK pathways in 3pX-1 versus 4pX-1 cells. Sustained pX-dependent RAS-RAF-MAPK pathway activation is observed in pX-transforming 3pX-1 cells, whereas sustained pX-dependent JNK pathway activation is observed in pX non-transforming 4pX-1 cells. This differential, pX-dependent mitogenic pathway activation affects differential activation of cAMP-response element-binding protein and c-Jun and determines the proliferative response of 3pX-1 and 4pX-1 cells. Furthermore, tetracycline-regulated, pX-NLS-expressing cell lines demonstrate that expression of the nuclear pX-NLS variant minimally activates the RAS-RAF-MAPK pathway and results in markedly reduced transformation. These results link sustained, pX-mediated activation of RAS-RAF-MAPK pathway to hepatocyte transformation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M104105200DOI Listing

Publication Analysis

Top Keywords

pathway activation
16
ras-raf-mapk jnk
12
jnk pathways
12
4px-1 cells
12
ras-raf-mapk pathway
12
hepatitis virus
8
activates ras-raf-mapk
8
hepatocyte transformation
8
activation
8
mitogenic pathway
8

Similar Publications

Background: Central venous access devices (CVAD) are widely used in patient care, providing an essential, reliable pathway for patients to receive chemotherapy, long-term infusions, and nutritional support. However, a system of exercise management has not been developed in patients with CVAD.

Purpose: To evaluate and summarize the evidence for management exercise in patients with CVAD and provide guidance for clinical practice.

View Article and Find Full Text PDF

Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts.

View Article and Find Full Text PDF

The P2YR is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2YR antagonists and the crystallographic overlap study between PPTN and compound , a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2YR antagonists. The optimal compound (methyl 3-(1-benzo[]imidazol-2-yl)-5-(2-(-tolyl) acetamido)benzoate, IC = 0.

View Article and Find Full Text PDF

Background: Recent studies show that hyperactivation of mTOR (mammalian target of rapamycin) signaling plays a causal role in the development of thoracic aortic aneurysm and dissection. Modulation of PP2A (protein phosphatase 2A) activity has been shown to be of significant therapeutic value. In light of the effects that PP2A can exert on the mTOR pathway, we hypothesized that PP2A activation by small-molecule activators of PP2A could mitigate AA progression in Marfan syndrome (MFS).

View Article and Find Full Text PDF

Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. In this study, we investigated the role of the BMP4 signaling pathway in regulating the degeneration of retinal ganglion cells (RGCs) in a mouse glaucoma model and its potential application in retinal stem cell. Our results demonstrate that BMP4-GPX4 not only reduces oxidative stress and iron accumulation but also promotes neuroprotective factors that support the survival of transplanted RSCs into the host retina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!