A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. | LitMetric

Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging.

AJR Am J Roentgenol

Department of Pediatrics, St. Louis Children's Hospital, Rm. 3S34, One Children's PI., St. Louis, MO 63110, USA.

Published: August 2001

Objective: MR imaging of central nervous system (CNS) malignancies falls short of a definitive evaluation. Tissue diagnosis remains the gold standard. Diffusion-tensor MR imaging measures the apparent diffusion coefficient and diffusion anisotropy of water in tissue. The purpose of this study was to test the hypothesis that the apparent diffusion coefficient may improve the MR imaging evaluation of newly diagnosed CNS neoplasms. We examined the relationship between the apparent diffusion coefficient, anisotropy, and tumor cellularity in 12 pediatric patients.

Materials And Methods: On the basis of histopathologic evaluation, tumors in this case series were segregated into three types: low-grade gliomas, embryonal tumors, and nonembryonal high-grade tumors. Mean apparent diffusion coefficient and anisotropy values obtained from the solid components of each tumor were compared with cellularity, total cellular area, and total nuclear area derived from biopsy material.

Results: The apparent diffusion coefficient ratio (tumor to normal brain) correlated well with tumor classification (p = 0.001). Anisotropy was decreased similarly in all tumor classifications. The absolute apparent diffusion coefficient correlated well with cellularity (p = 0.014) and total nuclear area (p = 0.005) per high-power field. The correlation between apparent diffusion coefficient and total cellular area per high-power field was not statistically significant.

Conclusion: The apparent diffusion coefficient may be predictive of tumor classification and may be a useful tool in characterizing tumor cellularity and total nuclear area. These parameters are not available in standard MR imaging. Therefore, diffusion-tensor imaging may enhance the diagnostic process in pediatric CNS malignancies.

Download full-text PDF

Source
http://dx.doi.org/10.2214/ajr.177.2.1770449DOI Listing

Publication Analysis

Top Keywords

apparent diffusion
32
diffusion coefficient
32
tumor cellularity
12
diffusion-tensor imaging
12
total nuclear
12
nuclear area
12
diffusion
9
tumor
8
cns malignancies
8
apparent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!